Term5 written as nominal_datatype is the recursive let.
theory Term5
imports "Parser"
begin
atom_decl name
ML {* restricted_nominal := 2 *}
nominal_datatype trm5 =
Vr5 "name"
| Ap5 "trm5" "trm5"
| Lt5 l::"lts" t::"trm5" bind "bv5 l" in t
and lts =
Lnil
| Lcons "name" "trm5" "lts"
binder
bv5
where
"bv5 Lnil = {}"
| "bv5 (Lcons n t ltl) = {atom n} \<union> (bv5 ltl)"
lemma lets_ok:
"(Lt5 (Lcons x (Vr5 x) Lnil) (Vr5 x)) = (Lt5 (Lcons y (Vr5 y) Lnil) (Vr5 y))"
apply (simp add: trm5_lts_inject)
apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
apply (simp_all add: alpha_gen)
apply (simp add: trm5_lts_perm fresh_star_def trm5_lts_fv trm5_lts_bn)
done
lemma lets_nok:
"x \<noteq> y \<Longrightarrow> (Lt5 (Lcons x (Vr5 x) Lnil) (Vr5 x)) \<noteq> (Lt5 (Lcons y (Vr5 x) Lnil) (Vr5 y))"
apply (simp only: trm5_lts_inject not_ex)
apply (rule allI)
apply (simp add: alpha_gen)
apply (simp add: trm5_lts_perm fresh_star_def trm5_lts_fv trm5_lts_bn trm5_lts_inject)
done
end