Nominal/Ex/Typing.thy
author Christian Urban <urbanc@in.tum.de>
Wed, 05 Jan 2011 16:51:27 +0000
changeset 2638 e1e2ca92760b
parent 2637 3890483c674f
child 2639 a8fc346deda3
permissions -rw-r--r--
strong rule inductions; as an example the weakening lemma works

theory Lambda
imports "../Nominal2" 
begin


atom_decl name

nominal_datatype lam =
  Var "name"
| App "lam" "lam"
| Lam x::"name" l::"lam"  bind x in l

thm lam.distinct
thm lam.induct
thm lam.exhaust lam.strong_exhaust
thm lam.fv_defs
thm lam.bn_defs
thm lam.perm_simps
thm lam.eq_iff
thm lam.fv_bn_eqvt
thm lam.size_eqvt

ML {*
fun mk_cplus p q = Thm.capply (Thm.capply @{cterm "plus::perm \<Rightarrow> perm \<Rightarrow> perm"} p) q 

fun mk_cminus p = Thm.capply @{cterm "uminus::perm \<Rightarrow> perm"} p 


fun minus_permute_intro_tac p = 
  rtac (Drule.instantiate' [] [SOME (mk_cminus p)] @{thm permute_boolE})

fun minus_permute_elim p thm = 
  thm RS (Drule.instantiate' [] [NONE, SOME (mk_cminus p)] @{thm permute_boolI})
*}

ML {*
fun real_head_of (@{term Trueprop} $ t) = real_head_of t
  | real_head_of (Const ("==>", _) $ _ $ t) = real_head_of t
  | real_head_of (Const (@{const_name all}, _) $ Abs (_, _, t)) = real_head_of t
  | real_head_of (Const (@{const_name All}, _) $ Abs (_, _, t)) = real_head_of t
  | real_head_of (Const ("HOL.induct_forall", _) $ Abs (_, _, t)) = real_head_of t
  | real_head_of t = head_of t  
*}

ML {* 
fun mk_vc_compat (avoid, avoid_trm) prems concl_args params = 
  let
    val vc_goal = concl_args
      |> HOLogic.mk_tuple
      |> mk_fresh_star avoid_trm 
      |> HOLogic.mk_Trueprop
      |> (curry Logic.list_implies) prems
      |> (curry list_all_free) params
    val finite_goal = avoid_trm
      |> mk_finite
      |> HOLogic.mk_Trueprop
      |> (curry Logic.list_implies) prems
      |> (curry list_all_free) params
  in 
    if null avoid then [] else [vc_goal, finite_goal]
  end
*}

ML {*
fun map_term prop f trm =
  if prop trm 
  then f trm
  else case trm of
    (t1 $ t2) => map_term prop f t1 $ map_term prop f t2
  | Abs (x, T, t) => Abs (x, T, map_term prop f t)
  | _ => trm
*}

ML {*
fun add_p_c p (c, c_ty) trm =
  let
    val (P, args) = strip_comb trm
    val (P_name, P_ty) = dest_Free P
    val (ty_args, bool) = strip_type P_ty
    val args' = map (mk_perm p) args
  in
    list_comb (Free (P_name, (c_ty :: ty_args) ---> bool),  c :: args')
    |> (fn t => HOLogic.all_const c_ty $ lambda c t )
    |> (fn t => HOLogic.all_const @{typ perm} $  lambda p t)
  end
*}

ML {*
fun induct_forall_const T = Const ("HOL.induct_forall", (T --> @{typ bool}) --> @{typ bool})
fun mk_induct_forall (a, T) t =  induct_forall_const T $ Abs (a, T, t)
*}

ML {*
fun add_c_prop qnt Ps (c, c_name, c_ty) trm =
  let
    fun add t = 
      let
        val (P, args) = strip_comb t
        val (P_name, P_ty) = dest_Free P
        val (ty_args, bool) = strip_type P_ty
        val args' = args
          |> qnt ? map (incr_boundvars 1)
      in
        list_comb (Free (P_name, (c_ty :: ty_args) ---> bool), c :: args')
        |> qnt ? mk_induct_forall (c_name, c_ty)
      end
  in
    map_term (member (op =) Ps o head_of) add trm
  end
*}

ML {*
fun prep_prem Ps c_name c_ty (avoid, avoid_trm) (params, prems, concl) =
  let
    val prems' = prems
      |> map (incr_boundvars 1) 
      |> map (add_c_prop true Ps (Bound 0, c_name, c_ty))

    val avoid_trm' = avoid_trm
      |> (curry list_abs_free) (params @ [(c_name, c_ty)])
      |> strip_abs_body
      |> (fn t => mk_fresh_star_ty c_ty t (Bound 0))
      |> HOLogic.mk_Trueprop

    val prems'' = 
      if null avoid 
      then prems' 
      else avoid_trm' :: prems'

    val concl' = concl
      |> incr_boundvars 1 
      |> add_c_prop false Ps (Bound 0, c_name, c_ty)  
  in
    mk_full_horn (params @ [(c_name, c_ty)]) prems'' concl'
  end
*}


ML {*
fun same_name (Free (a1, _), Free (a2, _)) = (a1 = a2)
  | same_name (Var (a1, _), Var (a2, _)) = (a1 = a2)
  | same_name (Const (a1, _), Const (a2, _)) = (a1 = a2)
  | same_name _ = false
*}

ML {*
fun map7 _ [] [] [] [] [] [] [] = []
  | map7 f (x :: xs) (y :: ys) (z :: zs) (u :: us) (v :: vs) (r :: rs) (s :: ss) = 
      f x y z u v r s :: map7 f xs ys zs us vs rs ss
*}

ML {*
(* local abbreviations *)
fun eqvt_stac ctxt = Nominal_Permeq.eqvt_strict_tac ctxt @{thms permute_minus_cancel} []  
fun eqvt_srule ctxt = Nominal_Permeq.eqvt_strict_rule ctxt @{thms permute_minus_cancel} []  
*}

ML {*
val all_elims = 
  let
     fun spec' ct = Drule.instantiate' [SOME (ctyp_of_term ct)] [NONE, SOME ct] @{thm spec}
  in
    fold (fn ct => fn th => th RS spec' ct)
  end
*}

ML {*
fun helper_tac flag prm p ctxt =
  Subgoal.SUBPROOF (fn {context, prems, ...} =>
    let
      val prems' = prems
        |> map (minus_permute_elim p)
        |> map (eqvt_srule context)

      val prm' = (prems' MRS prm)
        |> flag ? (all_elims [p])
        |> flag ? (eqvt_srule context)

      val _ = tracing ("prm':" ^ @{make_string} prm')
    in
      print_tac "start helper"
      THEN asm_full_simp_tac (HOL_ss addsimps (prm' :: @{thms induct_forall_def})) 1
      THEN print_tac "final helper"
    end) ctxt
*}

ML {*
fun non_binder_tac prem intr_cvars Ps ctxt = 
  Subgoal.SUBPROOF (fn {context, params, prems, ...} =>
    let
      val thy = ProofContext.theory_of context
      val (prms, p, _) = split_last2 (map snd params)
      val prm_tys = map (fastype_of o term_of) prms
      val cperms = map (cterm_of thy o perm_const) prm_tys
      val p_prms = map2 (fn ct1 => fn ct2 => Thm.mk_binop ct1 p ct2) cperms prms 
      val prem' = cterm_instantiate (intr_cvars ~~ p_prms) prem

      (* for inductive-premises*)
      fun tac1 prm = helper_tac true prm p context 

      (* for non-inductive premises *)   
      fun tac2 prm =  
        EVERY' [ minus_permute_intro_tac p, 
                 eqvt_stac context, 
                 helper_tac false prm p context ]

      fun select prm (t, i) =
        (if member same_name Ps (real_head_of t) then tac1 prm else tac2 prm) i
    in
      EVERY1 [eqvt_stac ctxt, rtac prem', RANGE (map (SUBGOAL o select) prems) ]
    end) ctxt
*}


ML {*
fun fresh_thm ctxt user_thm p c concl_args avoid_trm =
  let
    val conj1 = 
      mk_fresh_star (mk_perm (Bound 0) (mk_perm p avoid_trm)) c
    val conj2 =
      mk_fresh_star_ty @{typ perm} (mk_supp (HOLogic.mk_tuple (map (mk_perm p) concl_args))) (Bound 0)
    val fresh_goal = mk_exists ("q", @{typ perm}) (HOLogic.mk_conj (conj1, conj2))
      |> HOLogic.mk_Trueprop

    val ss = @{thms finite_supp supp_Pair finite_Un permute_finite} @ 
             @{thms fresh_star_Pair fresh_star_permute_iff}
    val simp = asm_full_simp_tac (HOL_ss addsimps ss)
  in 
    Goal.prove ctxt [] [] fresh_goal
      (K (HEADGOAL (rtac @{thm at_set_avoiding2} 
          THEN_ALL_NEW EVERY' [cut_facts_tac user_thm, REPEAT o etac @{thm conjE}, simp])))
  end
*}

ML {* 
val supp_perm_eq' = 
  @{lemma "supp (p \<bullet> x) \<sharp>* q ==> p \<bullet> x == (q + p) \<bullet> x" by (simp add: supp_perm_eq)}
val fresh_star_plus =
  @{lemma "(q \<bullet> (p \<bullet> x)) \<sharp>* c ==> ((q + p) \<bullet> x) \<sharp>* c" by (simp add: permute_plus)}
*}

ML {*
fun binder_tac prem intr_cvars param_trms Ps user_thm avoid avoid_trm concl_args ctxt = 
  Subgoal.FOCUS (fn {context = ctxt, params, prems, concl, ...} =>
    let
      val thy = ProofContext.theory_of ctxt
      val (prms, p, c) = split_last2 (map snd params)
      val prm_trms = map term_of prms
      val prm_tys = map fastype_of prm_trms

      val avoid_trm' = subst_free (param_trms ~~ prm_trms) avoid_trm 
      val concl_args' = map (subst_free (param_trms ~~ prm_trms)) concl_args 
      
      val user_thm' = map (cterm_instantiate (intr_cvars ~~ prms)) user_thm
        |> map (full_simplify (HOL_ss addsimps (@{thm fresh_star_Pair}::prems)))
      
      val fthm = fresh_thm ctxt user_thm' (term_of p) (term_of c) concl_args' avoid_trm'

      val (([(_, q)], fprop :: fresh_eqs), ctxt') = Obtain.result
              (K (EVERY1 [etac @{thm exE}, 
                          full_simp_tac (HOL_basic_ss addsimps @{thms supp_Pair fresh_star_Un}), 
                          REPEAT o etac @{thm conjE},
                          dtac fresh_star_plus,
                          REPEAT o dtac supp_perm_eq'])) [fthm] ctxt 

      val expand_conv = Conv.try_conv (Conv.rewrs_conv fresh_eqs)
      fun expand_conv_bot ctxt = Conv.bottom_conv (K expand_conv) ctxt

      val cperms = map (cterm_of thy o perm_const) prm_tys
      val qp_prms = map2 (fn ct1 => fn ct2 => Thm.mk_binop ct1 (mk_cplus q p) ct2) cperms prms 
      val prem' = cterm_instantiate (intr_cvars ~~ qp_prms) prem

      val fprop' = eqvt_srule ctxt' fprop 
      val tac_fresh = simp_tac (HOL_basic_ss addsimps [fprop'])

      (* for inductive-premises*)
      fun tac1 prm = helper_tac true prm (mk_cplus q p) ctxt' 

      (* for non-inductive premises *)   
      fun tac2 prm =  
        EVERY' [ minus_permute_intro_tac (mk_cplus q p), 
                 eqvt_stac ctxt, 
                 helper_tac false prm (mk_cplus q p) ctxt' ]

      fun select prm (t, i) =
        (if member same_name Ps (real_head_of t) then tac1 prm else tac2 prm) i

      val _ = tracing ("fthm:\n" ^ @{make_string} fthm)
      val _ = tracing ("fr_eqs:\n" ^ cat_lines (map @{make_string} fresh_eqs))
      val _ = tracing ("fprop:\n" ^ @{make_string} fprop)
      val _ = tracing ("fprop':\n" ^ @{make_string} fprop')
      val _ = tracing ("fperm:\n" ^ @{make_string} q)
      val _ = tracing ("prem':\n" ^ @{make_string} prem')

      val side_thm = Goal.prove ctxt' [] [] (term_of concl)
        (fn {context, ...} => 
           EVERY1 [ CONVERSION (expand_conv_bot context),
                    eqvt_stac context,
                    rtac prem',
                    RANGE (tac_fresh :: map (SUBGOAL o select) prems),
                    K (print_tac "GOAL") ])
        |> singleton (ProofContext.export ctxt' ctxt)        
    in
      rtac side_thm 1
    end) ctxt
*}

ML {*
fun case_tac ctxt Ps avoid avoid_trm intr_cvars param_trms prem user_thm concl_args =
  let
    val tac1 = non_binder_tac prem intr_cvars Ps ctxt
    val tac2 = binder_tac prem intr_cvars param_trms Ps user_thm avoid avoid_trm concl_args ctxt
  in 
    EVERY' [ rtac @{thm allI}, rtac @{thm allI}, if null avoid then tac1 else tac2 ]
  end
*}

ML {*
fun prove_sinduct_tac raw_induct user_thms Ps avoids avoid_trms intr_cvars param_trms concl_args 
  {prems, context} =
  let
    val cases_tac = 
      map7 (case_tac context Ps) avoids avoid_trms intr_cvars param_trms prems user_thms concl_args
  in 
    EVERY1 [ DETERM o rtac raw_induct, RANGE cases_tac ]
  end
*}

ML {*
val normalise = @{lemma "(Q --> (!p c. P p c)) ==> (!!c. Q ==> P (0::perm) c)" by simp}
*}

ML {* Local_Theory.note *}

ML {*
fun prove_strong_inductive pred_names rule_names avoids raw_induct intrs ctxt =
  let
    val thy = ProofContext.theory_of ctxt
    val ((_, [raw_induct']), ctxt') = Variable.import true [raw_induct] ctxt

    val (ind_prems, ind_concl) = raw_induct'
      |> prop_of
      |> Logic.strip_horn
      |>> map strip_full_horn
    val params = map (fn (x, _, _) => x) ind_prems
    val param_trms = (map o map) Free params  

    val intr_vars_tys = map (fn t => rev (Term.add_vars (prop_of t) [])) intrs
    val intr_vars = (map o map) fst intr_vars_tys
    val intr_vars_substs = map2 (curry (op ~~)) intr_vars param_trms
    val intr_cvars = (map o map) (cterm_of thy o Var) intr_vars_tys      

    val (intr_prems, intr_concls) = intrs
      |> map prop_of
      |> map2 subst_Vars intr_vars_substs
      |> map Logic.strip_horn
      |> split_list

    val intr_concls_args = map (snd o strip_comb o HOLogic.dest_Trueprop) intr_concls 
      
    val avoid_trms = avoids
      |> (map o map) (setify ctxt') 
      |> map fold_union

    val vc_compat_goals = 
      map4 mk_vc_compat (avoids ~~ avoid_trms) intr_prems intr_concls_args params

    val ([c_name, a, p], ctxt'') = Variable.variant_fixes ["c", "'a", "p"] ctxt'
    val c_ty = TFree (a, @{sort fs})
    val c = Free (c_name, c_ty)
    val p = Free (p, @{typ perm})

    val (preconds, ind_concls) = ind_concl
      |> HOLogic.dest_Trueprop
      |> HOLogic.dest_conj 
      |> map HOLogic.dest_imp
      |> split_list

    val Ps = map (fst o strip_comb) ind_concls

    val ind_concl' = ind_concls
      |> map (add_p_c p (c, c_ty))
      |> (curry (op ~~)) preconds  
      |> map HOLogic.mk_imp
      |> fold_conj
      |> HOLogic.mk_Trueprop

    val ind_prems' = ind_prems
      |> map2 (prep_prem Ps c_name c_ty) (avoids ~~ avoid_trms)   

    fun after_qed ctxt_outside user_thms ctxt = 
      let
        val strong_ind_thms = Goal.prove ctxt [] ind_prems' ind_concl' 
        (prove_sinduct_tac raw_induct user_thms Ps avoids avoid_trms intr_cvars param_trms intr_concls_args) 
          |> singleton (ProofContext.export ctxt ctxt_outside)
          |> Datatype_Aux.split_conj_thm
          |> map (fn thm => thm RS normalise)
          |> map (asm_full_simplify (HOL_basic_ss addsimps @{thms permute_zero induct_rulify})) 
          |> map (Drule.rotate_prems (length ind_prems'))
          |> map zero_var_indexes

        val qualified_thm_name = pred_names
          |> map Long_Name.base_name
          |> space_implode "_"
          |> (fn s => Binding.qualify false s (Binding.name "strong_induct"))

        val attrs = 
          [ Attrib.internal (K (Rule_Cases.consumes 1)),
            Attrib.internal (K (Rule_Cases.case_names rule_names)) ]
        val _ = tracing ("RESULTS\n" ^ cat_lines (map (Syntax.string_of_term ctxt o prop_of) strong_ind_thms))
        val _ = tracing ("rule_names: " ^ commas rule_names)
        val _ = tracing ("pred_names: " ^ commas pred_names)
      in
        ctxt
        |> Local_Theory.note ((qualified_thm_name, attrs), strong_ind_thms)    
        |> snd   
      end
  in
    Proof.theorem NONE (after_qed ctxt) ((map o map) (rpair []) vc_compat_goals) ctxt''
  end
*}

ML {*
fun prove_strong_inductive_cmd (pred_name, avoids) ctxt =
  let
    val thy = ProofContext.theory_of ctxt;
    val ({names, ...}, {raw_induct, intrs, ...}) =
      Inductive.the_inductive ctxt (Sign.intern_const thy pred_name);

    val rule_names = 
      hd names
      |> the o Induct.lookup_inductP ctxt
      |> fst o Rule_Cases.get
      |> map fst

    val _ = (case duplicates (op = o pairself fst) avoids of
        [] => ()
      | xs => error ("Duplicate case names: " ^ commas_quote (map fst xs)))

    val _ = (case subtract (op =) rule_names (map fst avoids) of
        [] => ()
      | xs => error ("No such case(s) in inductive definition: " ^ commas_quote xs))

    val avoids_ordered = order_default (op =) [] rule_names avoids
      
    fun read_avoids avoid_trms intr =
      let
        (* fixme hack *)
        val (((_, ctrms), _), ctxt') = Variable.import true [intr] ctxt
        val trms = map (term_of o snd) ctrms
        val ctxt'' = fold Variable.declare_term trms ctxt' 
      in
        map (Syntax.read_term ctxt'') avoid_trms 
      end 

    val avoid_trms = map2 read_avoids avoids_ordered intrs
  in
    prove_strong_inductive names rule_names avoid_trms raw_induct intrs ctxt
  end
*}

ML {*
(* outer syntax *)
local
  structure P = Parse;
  structure S = Scan
  
  val _ = Keyword.keyword "avoids"

  val single_avoid_parser = 
    P.name -- (P.$$$ ":" |-- P.and_list1 P.term)

  val avoids_parser = 
    S.optional (P.$$$ "avoids" |-- P.enum1 "|" single_avoid_parser) []

  val main_parser = P.xname -- avoids_parser
in
  val _ =
  Outer_Syntax.local_theory_to_proof "nominal_inductive"
    "prove strong induction theorem for inductive predicate involving nominal datatypes"
      Keyword.thy_goal (main_parser >> prove_strong_inductive_cmd)
end
*}

inductive
  Acc :: "('a::pt \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool"
where
  AccI: "(\<And>y. R y x \<Longrightarrow> Acc R y) \<Longrightarrow> Acc R x"

(*
equivariance Acc
*)

lemma Acc_eqvt [eqvt]:
  fixes p::"perm"
  assumes a: "Acc R x"
  shows "Acc (p \<bullet> R) (p \<bullet> x)"
using a
apply(induct)
apply(rule AccI)
apply(rotate_tac 1)
apply(drule_tac x="-p \<bullet> y" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(rule_tac p="p" in permute_boolE)
apply(perm_simp add: permute_minus_cancel)
apply(assumption)
apply(assumption)
done
 

nominal_inductive Acc .

thm Acc.strong_induct

section {* Typing *}

nominal_datatype ty =
  TVar string
| TFun ty ty ("_ \<rightarrow> _") 

lemma ty_fresh:
  fixes x::"name"
  and   T::"ty"
  shows "atom x \<sharp> T"
apply (nominal_induct T rule: ty.strong_induct)
apply (simp_all add: ty.fresh pure_fresh)
done



inductive
  valid :: "(name \<times> ty) list \<Rightarrow> bool"
where
  v_Nil[intro]: "valid []"
| v_Cons[intro]: "\<lbrakk>atom x \<sharp> Gamma; valid Gamma\<rbrakk> \<Longrightarrow> valid ((x, T)#Gamma)"

inductive
  typing :: "(name\<times>ty) list \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60,60,60] 60) 
where
    t_Var[intro]: "\<lbrakk>valid \<Gamma>; (x, T) \<in> set \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T"
  | t_App[intro]: "\<lbrakk>\<Gamma> \<turnstile> t1 : T1 \<rightarrow> T2; \<Gamma> \<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 : T2"
  | t_Lam[intro]: "\<lbrakk>atom x \<sharp> \<Gamma>; (x, T1) # \<Gamma> \<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam x t : T1 \<rightarrow> T2"

thm typing.intros
thm typing.induct



equivariance valid
equivariance typing

nominal_inductive typing
  avoids t_Lam: "x"
  apply -
  apply(simp_all add: fresh_star_def ty_fresh lam.fresh)?
  done

thm typing.strong_induct

abbreviation
  "sub_context" :: "(name \<times> ty) list \<Rightarrow> (name \<times> ty) list \<Rightarrow> bool" ("_ \<subseteq> _" [60,60] 60) 
where
  "\<Gamma>1 \<subseteq> \<Gamma>2 \<equiv> \<forall>x T. (x, T) \<in> set \<Gamma>1 \<longrightarrow> (x, T) \<in> set \<Gamma>2"

text {* Now it comes: The Weakening Lemma *}

text {*
  The first version is, after setting up the induction, 
  completely automatic except for use of atomize. *}

lemma weakening_version2: 
  fixes \<Gamma>1 \<Gamma>2::"(name \<times> ty) list"
  and   t ::"lam"
  and   \<tau> ::"ty"
  assumes a: "\<Gamma>1 \<turnstile> t : T"
  and     b: "valid \<Gamma>2" 
  and     c: "\<Gamma>1 \<subseteq> \<Gamma>2"
  shows "\<Gamma>2 \<turnstile> t : T"
using a b c
proof (nominal_induct \<Gamma>1 t T avoiding: \<Gamma>2 rule: typing.strong_induct)
  case (t_Var \<Gamma>1 x T)  (* variable case *)
  have "\<Gamma>1 \<subseteq> \<Gamma>2" by fact 
  moreover  
  have "valid \<Gamma>2" by fact 
  moreover 
  have "(x,T)\<in> set \<Gamma>1" by fact
  ultimately show "\<Gamma>2 \<turnstile> Var x : T" by auto
next
  case (t_Lam x \<Gamma>1 T1 t T2) (* lambda case *)
  have vc: "atom x \<sharp> \<Gamma>2" by fact   (* variable convention *)
  have ih: "\<lbrakk>valid ((x, T1) # \<Gamma>2); (x, T1) # \<Gamma>1 \<subseteq> (x, T1) # \<Gamma>2\<rbrakk> \<Longrightarrow> (x, T1) # \<Gamma>2 \<turnstile> t : T2" by fact
  have "\<Gamma>1 \<subseteq> \<Gamma>2" by fact
  then have "(x, T1) # \<Gamma>1 \<subseteq> (x, T1) # \<Gamma>2" by simp
  moreover
  have "valid \<Gamma>2" by fact
  then have "valid ((x, T1) # \<Gamma>2)" using vc by (simp add: v_Cons)
  ultimately have "(x, T1) # \<Gamma>2 \<turnstile> t : T2" using ih by simp
  with vc show "\<Gamma>2 \<turnstile> Lam x t : T1 \<rightarrow> T2" by auto
qed (auto) (* app case *)

lemma weakening_version1: 
  fixes \<Gamma>1 \<Gamma>2::"(name \<times> ty) list"
  assumes a: "\<Gamma>1 \<turnstile> t : T" 
  and     b: "valid \<Gamma>2" 
  and     c: "\<Gamma>1 \<subseteq> \<Gamma>2"
  shows "\<Gamma>2 \<turnstile> t : T"
using a b c
apply (nominal_induct \<Gamma>1 t T avoiding: \<Gamma>2 rule: typing.strong_induct)
apply (auto | atomize)+
done



end