theory Tutorial4
imports Tutorial1 Tutorial2
begin
section {* The CBV Reduction Relation (Small-Step Semantics) *}
text {*
In order to help establishing the property that the CK Machine
calculates a nomrmalform that corresponds to the evaluation
relation, we introduce the call-by-value small-step semantics.
*}
inductive
cbv :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<longrightarrow>cbv _" [60, 60] 60)
where
cbv1: "\<lbrakk>val v; atom x \<sharp> v\<rbrakk> \<Longrightarrow> App (Lam [x].t) v \<longrightarrow>cbv t[x ::= v]"
| cbv2[intro]: "t \<longrightarrow>cbv t' \<Longrightarrow> App t t2 \<longrightarrow>cbv App t' t2"
| cbv3[intro]: "t \<longrightarrow>cbv t' \<Longrightarrow> App t2 t \<longrightarrow>cbv App t2 t'"
equivariance val
equivariance cbv
nominal_inductive cbv
avoids cbv1: "x"
unfolding fresh_star_def
by (simp_all add: lam.fresh Abs_fresh_iff fresh_Pair fresh_fact)
text {*
In order to satisfy the vc-condition we have to formulate
this relation with the additional freshness constraint
atom x \<sharp> v. Although this makes the definition vc-ompatible, it
makes the definition less useful. We can with a little bit of
pain show that the more restricted rule is equivalent to the
usual rule.
*}
lemma subst_rename:
assumes a: "atom y \<sharp> t"
shows "t[x ::= s] = ((y \<leftrightarrow> x) \<bullet> t)[y ::= s]"
using a
by (nominal_induct t avoiding: x y s rule: lam.strong_induct)
(auto simp add: lam.fresh fresh_at_base)
lemma better_cbv1 [intro]:
assumes a: "val v"
shows "App (Lam [x].t) v \<longrightarrow>cbv t[x::=v]"
proof -
obtain y::"name" where fs: "atom y \<sharp> (x, t, v)" by (rule obtain_fresh)
have "App (Lam [x].t) v = App (Lam [y].((y \<leftrightarrow> x) \<bullet> t)) v" using fs
by (auto simp add: lam.eq_iff Abs1_eq_iff' flip_def fresh_Pair fresh_at_base)
also have "\<dots> \<longrightarrow>cbv ((y \<leftrightarrow> x) \<bullet> t)[y ::= v]" using fs a cbv1 by auto
also have "\<dots> = t[x ::= v]" using fs subst_rename[symmetric] by simp
finally show "App (Lam [x].t) v \<longrightarrow>cbv t[x ::= v]" by simp
qed
text {*
The transitive closure of the cbv-reduction relation:
*}
inductive
"cbvs" :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>cbv* _" [60, 60] 60)
where
cbvs1[intro]: "e \<longrightarrow>cbv* e"
| cbvs2[intro]: "\<lbrakk>e1\<longrightarrow>cbv e2; e2 \<longrightarrow>cbv* e3\<rbrakk> \<Longrightarrow> e1 \<longrightarrow>cbv* e3"
lemma cbvs3 [intro]:
assumes a: "e1 \<longrightarrow>cbv* e2" "e2 \<longrightarrow>cbv* e3"
shows "e1 \<longrightarrow>cbv* e3"
using a by (induct) (auto)
subsection {* EXERCISE 8 *}
text {*
If more simple exercises are needed, then complete the following proof.
*}
lemma cbv_in_ctx:
assumes a: "t \<longrightarrow>cbv t'"
shows "E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>"
using a
proof (induct E)
case Hole
have "t \<longrightarrow>cbv t'" by fact
then show "\<box>\<lbrakk>t\<rbrakk> \<longrightarrow>cbv \<box>\<lbrakk>t'\<rbrakk>" by simp
next
case (CAppL E s)
have ih: "t \<longrightarrow>cbv t' \<Longrightarrow> E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by fact
moreover
have "t \<longrightarrow>cbv t'" by fact
ultimately
have "E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by simp
then show "(CAppL E s)\<lbrakk>t\<rbrakk> \<longrightarrow>cbv (CAppL E s)\<lbrakk>t'\<rbrakk>" by auto
next
case (CAppR s E)
have ih: "t \<longrightarrow>cbv t' \<Longrightarrow> E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by fact
moreover
have a: "t \<longrightarrow>cbv t'" by fact
ultimately
have "E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by simp
then show "(CAppR s E)\<lbrakk>t\<rbrakk> \<longrightarrow>cbv (CAppR s E)\<lbrakk>t'\<rbrakk>" by auto
qed
section {* EXERCISE 9 *}
text {*
The point of the cbv-reduction was that we can easily relatively
establish the follwoing property:
*}
lemma machine_implies_cbvs_ctx:
assumes a: "<e, Es> \<mapsto> <e', Es'>"
shows "(Es\<down>)\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* (Es'\<down>)\<lbrakk>e'\<rbrakk>"
using a
proof (induct)
case (m1 t1 t2 Es)
show "Es\<down>\<lbrakk>App t1 t2\<rbrakk> \<longrightarrow>cbv* ((CAppL \<box> t2) # Es)\<down>\<lbrakk>t1\<rbrakk>" sorry
next
case (m2 v t2 Es)
have "val v" by fact
show "((CAppL \<box> t2) # Es)\<down>\<lbrakk>v\<rbrakk> \<longrightarrow>cbv* (CAppR v \<box> # Es)\<down>\<lbrakk>t2\<rbrakk>" sorry
next
case (m3 v x t Es)
have "val v" by fact
show "(((CAppR (Lam [x].t) \<box>) # Es)\<down>)\<lbrakk>v\<rbrakk> \<longrightarrow>cbv* (Es\<down>)\<lbrakk>(t[x ::= v])\<rbrakk>" sorry
qed
text {*
It is not difficult to extend the lemma above to
arbitrary reductions sequences of the CK machine. *}
lemma machines_implies_cbvs_ctx:
assumes a: "<e, Es> \<mapsto>* <e', Es'>"
shows "(Es\<down>)\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* (Es'\<down>)\<lbrakk>e'\<rbrakk>"
using a machine_implies_cbvs_ctx
by (induct) (blast)+
text {*
So whenever we let the CL machine start in an initial
state and it arrives at a final state, then there exists
a corresponding cbv-reduction sequence.
*}
corollary machines_implies_cbvs:
assumes a: "<e, []> \<mapsto>* <e', []>"
shows "e \<longrightarrow>cbv* e'"
proof -
have "[]\<down>\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* []\<down>\<lbrakk>e'\<rbrakk>"
using a machines_implies_cbvs_ctx by blast
then show "e \<longrightarrow>cbv* e'" by simp
qed
text {*
We now want to relate the cbv-reduction to the evaluation
relation. For this we need two auxiliary lemmas.
*}
lemma eval_val:
assumes a: "val t"
shows "t \<Down> t"
using a by (induct) (auto)
lemma e_App_elim:
assumes a: "App t1 t2 \<Down> v"
obtains x t v' where "t1 \<Down> Lam [x].t" "t2 \<Down> v'" "t[x::=v'] \<Down> v"
using a by (cases) (auto simp add: lam.eq_iff lam.distinct)
subsection {* EXERCISE *}
text {*
Complete the first and second case in the
proof below.
*}
lemma cbv_eval:
assumes a: "t1 \<longrightarrow>cbv t2" "t2 \<Down> t3"
shows "t1 \<Down> t3"
using a
proof(induct arbitrary: t3)
case (cbv1 v x t t3)
have a1: "val v" by fact
have a2: "t[x ::= v] \<Down> t3" by fact
have a3: "Lam [x].t \<Down> Lam [x].t" by auto
have a4: "v \<Down> v" using a1 eval_val by auto
show "App (Lam [x].t) v \<Down> t3" using a3 a4 a2 by auto
next
case (cbv2 t t' t2 t3)
have ih: "\<And>t3. t' \<Down> t3 \<Longrightarrow> t \<Down> t3" by fact
have "App t' t2 \<Down> t3" by fact
then obtain x t'' v'
where a1: "t' \<Down> Lam [x].t''"
and a2: "t2 \<Down> v'"
and a3: "t''[x ::= v'] \<Down> t3" by (rule e_App_elim)
have "t \<Down> Lam [x].t''" using ih a1 by auto
then show "App t t2 \<Down> t3" using a2 a3 by auto
qed (auto elim!: e_App_elim)
text {*
Next we extend the lemma above to arbitray initial
sequences of cbv-reductions. *}
lemma cbvs_eval:
assumes a: "t1 \<longrightarrow>cbv* t2" "t2 \<Down> t3"
shows "t1 \<Down> t3"
using a by (induct) (auto intro: cbv_eval)
text {*
Finally, we can show that if from a term t we reach a value
by a cbv-reduction sequence, then t evaluates to this value.
*}
lemma cbvs_implies_eval:
assumes a: "t \<longrightarrow>cbv* v" "val v"
shows "t \<Down> v"
using a
by (induct) (auto intro: eval_val cbvs_eval)
text {*
All facts tied together give us the desired property about
machines.
*}
theorem machines_implies_eval:
assumes a: "<t1, []> \<mapsto>* <t2, []>"
and b: "val t2"
shows "t1 \<Down> t2"
proof -
have "t1 \<longrightarrow>cbv* t2" using a machines_implies_cbvs by simp
then show "t1 \<Down> t2" using b cbvs_implies_eval by simp
qed
lemma valid_elim:
assumes a: "valid ((x, T) # \<Gamma>)"
shows "atom x \<sharp> \<Gamma> \<and> valid \<Gamma>"
using a by (cases) (auto)
lemma valid_insert:
assumes a: "valid (\<Delta> @ [(x, T)] @ \<Gamma>)"
shows "valid (\<Delta> @ \<Gamma>)"
using a
by (induct \<Delta>)
(auto simp add: fresh_append fresh_Cons dest!: valid_elim)
lemma fresh_list:
shows "atom y \<sharp> xs = (\<forall>x \<in> set xs. atom y \<sharp> x)"
by (induct xs) (simp_all add: fresh_Nil fresh_Cons)
lemma context_unique:
assumes a1: "valid \<Gamma>"
and a2: "(x, T) \<in> set \<Gamma>"
and a3: "(x, U) \<in> set \<Gamma>"
shows "T = U"
using a1 a2 a3
by (induct) (auto simp add: fresh_list fresh_Pair fresh_at_base)
lemma type_substitution_aux:
assumes a: "\<Delta> @ [(x, T')] @ \<Gamma> \<turnstile> e : T"
and b: "\<Gamma> \<turnstile> e' : T'"
shows "\<Delta> @ \<Gamma> \<turnstile> e[x ::= e'] : T"
using a b
proof (nominal_induct \<Gamma>'\<equiv>"\<Delta> @ [(x, T')] @ \<Gamma>" e T avoiding: x e' \<Delta> rule: typing.strong_induct)
case (t_Var y T x e' \<Delta>)
have a1: "valid (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact
have a2: "(y,T) \<in> set (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact
have a3: "\<Gamma> \<turnstile> e' : T'" by fact
from a1 have a4: "valid (\<Delta> @ \<Gamma>)" by (rule valid_insert)
{ assume eq: "x = y"
from a1 a2 have "T = T'" using eq by (auto intro: context_unique)
with a3 have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" using eq a4 by (auto intro: weakening)
}
moreover
{ assume ineq: "x \<noteq> y"
from a2 have "(y, T) \<in> set (\<Delta> @ \<Gamma>)" using ineq by simp
then have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" using ineq a4 by auto
}
ultimately show "\<Delta> @ \<Gamma> \<turnstile> Var y[x::=e'] : T" by blast
qed (force simp add: fresh_append fresh_Cons)+
corollary type_substitution:
assumes a: "(x, T') # \<Gamma> \<turnstile> e : T"
and b: "\<Gamma> \<turnstile> e' : T'"
shows "\<Gamma> \<turnstile> e[x ::= e'] : T"
using a b type_substitution_aux[where \<Delta>="[]"]
by auto
lemma t_App_elim:
assumes a: "\<Gamma> \<turnstile> App t1 t2 : T"
obtains T' where "\<Gamma> \<turnstile> t1 : T' \<rightarrow> T" "\<Gamma> \<turnstile> t2 : T'"
using a
by (cases) (auto simp add: lam.eq_iff lam.distinct)
text {* we have not yet generated strong elimination rules *}
lemma t_Lam_elim:
assumes ty: "\<Gamma> \<turnstile> Lam [x].t : T"
and fc: "atom x \<sharp> \<Gamma>"
obtains T1 T2 where "T = T1 \<rightarrow> T2" "(x, T1) # \<Gamma> \<turnstile> t : T2"
using ty fc
apply(cases)
apply(auto simp add: lam.eq_iff lam.distinct ty.eq_iff)
apply(auto simp add: Abs1_eq_iff)
apply(rotate_tac 3)
apply(drule_tac p="(x \<leftrightarrow> xa)" in permute_boolI)
apply(perm_simp)
apply(auto simp add: flip_def swap_fresh_fresh ty_fresh)
done
theorem cbv_type_preservation:
assumes a: "t \<longrightarrow>cbv t'"
and b: "\<Gamma> \<turnstile> t : T"
shows "\<Gamma> \<turnstile> t' : T"
using a b
by (nominal_induct avoiding: \<Gamma> T rule: cbv.strong_induct)
(auto elim!: t_Lam_elim t_App_elim simp add: type_substitution ty.eq_iff)
corollary cbvs_type_preservation:
assumes a: "t \<longrightarrow>cbv* t'"
and b: "\<Gamma> \<turnstile> t : T"
shows "\<Gamma> \<turnstile> t' : T"
using a b
by (induct) (auto intro: cbv_type_preservation)
text {*
The type-preservation property for the machine and
evaluation relation.
*}
theorem machine_type_preservation:
assumes a: "<t, []> \<mapsto>* <t', []>"
and b: "\<Gamma> \<turnstile> t : T"
shows "\<Gamma> \<turnstile> t' : T"
proof -
have "t \<longrightarrow>cbv* t'" using a machines_implies_cbvs by simp
then show "\<Gamma> \<turnstile> t' : T" using b cbvs_type_preservation by simp
qed
theorem eval_type_preservation:
assumes a: "t \<Down> t'"
and b: "\<Gamma> \<turnstile> t : T"
shows "\<Gamma> \<turnstile> t' : T"
proof -
have "<t, []> \<mapsto>* <t', []>" using a eval_implies_machines by simp
then show "\<Gamma> \<turnstile> t' : T" using b machine_type_preservation by simp
qed
text {* The Progress Property *}
lemma canonical_tArr:
assumes a: "[] \<turnstile> t : T1 \<rightarrow> T2"
and b: "val t"
obtains x t' where "t = Lam [x].t'"
using b a by (induct) (auto)
theorem progress:
assumes a: "[] \<turnstile> t : T"
shows "(\<exists>t'. t \<longrightarrow>cbv t') \<or> (val t)"
using a
by (induct \<Gamma>\<equiv>"[]::ty_ctx" t T)
(auto elim: canonical_tArr)
text {*
Done!
*}
end