+ −
+ −
theory Tutorial5+ −
imports Tutorial4+ −
begin+ −
+ −
section {* Type-Preservation and Progress Lemma*}+ −
+ −
text {*+ −
The point of this tutorial is to prove the+ −
type-preservation and progress lemma. Since+ −
we now know that \<Down>, \<longrightarrow>cbv* and the machine+ −
correspond to each other, we only need to+ −
prove this property for one of them. We chose+ −
\<longrightarrow>cbv.+ −
+ −
First we need to establish two elimination+ −
properties and two auxiliary lemmas about contexts.+ −
*}+ −
+ −
+ −
lemma valid_elim:+ −
assumes a: "valid ((x, T) # \<Gamma>)"+ −
shows "atom x \<sharp> \<Gamma> \<and> valid \<Gamma>"+ −
using a by (cases) (auto)+ −
+ −
lemma valid_insert:+ −
assumes a: "valid (\<Delta> @ [(x, T)] @ \<Gamma>)"+ −
shows "valid (\<Delta> @ \<Gamma>)" + −
using a+ −
by (induct \<Delta>)+ −
(auto simp add: fresh_append fresh_Cons dest!: valid_elim)+ −
+ −
lemma fresh_list: + −
shows "atom y \<sharp> xs = (\<forall>x \<in> set xs. atom y \<sharp> x)"+ −
by (induct xs) (simp_all add: fresh_Nil fresh_Cons)+ −
+ −
lemma context_unique:+ −
assumes a1: "valid \<Gamma>"+ −
and a2: "(x, T) \<in> set \<Gamma>"+ −
and a3: "(x, U) \<in> set \<Gamma>"+ −
shows "T = U" + −
using a1 a2 a3+ −
by (induct) (auto simp add: fresh_list fresh_Pair fresh_at_base)+ −
+ −
+ −
section {* EXERCISE 16 *}+ −
+ −
text {*+ −
Next we want to show the type substitution lemma. Unfortunately,+ −
we have to prove a slightly more general version of it, where+ −
the variable being substituted occurs somewhere inside the + −
context.+ −
*}+ −
+ −
lemma type_substitution_aux:+ −
assumes a: "\<Delta> @ [(x, T')] @ \<Gamma> \<turnstile> e : T"+ −
and b: "\<Gamma> \<turnstile> e' : T'"+ −
shows "\<Delta> @ \<Gamma> \<turnstile> e[x ::= e'] : T" + −
using a b + −
proof (nominal_induct \<Gamma>'\<equiv>"\<Delta> @ [(x, T')] @ \<Gamma>" e T avoiding: x e' \<Delta> rule: typing.strong_induct)+ −
case (t_Var y T x e' \<Delta>)+ −
have a1: "valid (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact+ −
have a2: "(y,T) \<in> set (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact + −
have a3: "\<Gamma> \<turnstile> e' : T'" by fact+ −
+ −
from a1 have a4: "valid (\<Delta> @ \<Gamma>)" by (rule valid_insert)+ −
{ assume eq: "x = y"+ −
+ −
have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" sorry+ −
}+ −
moreover+ −
{ assume ineq: "x \<noteq> y"+ −
from a2 have "(y, T) \<in> set (\<Delta> @ \<Gamma>)" using ineq by simp+ −
then have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" using ineq a4 by auto+ −
}+ −
ultimately show "\<Delta> @ \<Gamma> \<turnstile> Var y[x::=e'] : T" by blast+ −
next+ −
case (t_Lam y T1 t T2 x e' \<Delta>)+ −
have a1: "atom y \<sharp> e'" by fact+ −
have a2: "atom y \<sharp> \<Delta> @ [(x, T')] @ \<Gamma>" by fact+ −
have a3: "\<Gamma> \<turnstile> e' : T'" by fact + −
have ih: "\<Gamma> \<turnstile> e' : T' \<Longrightarrow> ((y, T1) # \<Delta>) @ \<Gamma> \<turnstile> t [x ::= e'] : T2" + −
using t_Lam(6)[of "(y, T1) # \<Delta>"] by auto + −
+ −
+ −
show "\<Delta> @ \<Gamma> \<turnstile> (Lam [y]. t)[x ::= e'] : T1 \<rightarrow> T2" sorry+ −
next+ −
case (t_App t1 T1 T2 t2 x e' \<Delta>)+ −
have ih1: "\<Gamma> \<turnstile> e' : T' \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> t1 [x ::= e'] : T1 \<rightarrow> T2" using t_App(2) by auto + −
have ih2: "\<Gamma> \<turnstile> e' : T' \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> t2 [x ::= e'] : T1" using t_App(4) by auto + −
have a: "\<Gamma> \<turnstile> e' : T'" by fact+ −
+ −
show "\<Delta> @ \<Gamma> \<turnstile> App t1 t2 [x ::= e'] : T2" sorry+ −
qed + −
+ −
text {*+ −
From this we can derive the usual version of the substitution+ −
lemma.+ −
*}+ −
+ −
corollary type_substitution:+ −
assumes a: "(x, T') # \<Gamma> \<turnstile> e : T"+ −
and b: "\<Gamma> \<turnstile> e' : T'"+ −
shows "\<Gamma> \<turnstile> e[x ::= e'] : T"+ −
using a b type_substitution_aux[of "[]"]+ −
by auto+ −
+ −
+ −
section {* Type Preservation *}+ −
+ −
text {*+ −
Finally we are in a position to establish the type preservation+ −
property. We just need the following two inversion rules for+ −
particualr typing instances.+ −
*}+ −
+ −
lemma t_App_elim:+ −
assumes a: "\<Gamma> \<turnstile> App t1 t2 : T"+ −
obtains T' where "\<Gamma> \<turnstile> t1 : T' \<rightarrow> T" "\<Gamma> \<turnstile> t2 : T'"+ −
using a+ −
by (cases) (auto simp add: lam.eq_iff lam.distinct)+ −
+ −
text {* we have not yet generated strong elimination rules *}+ −
lemma t_Lam_elim:+ −
assumes ty: "\<Gamma> \<turnstile> Lam [x].t : T" + −
and fc: "atom x \<sharp> \<Gamma>" + −
obtains T1 T2 where "T = T1 \<rightarrow> T2" "(x, T1) # \<Gamma> \<turnstile> t : T2"+ −
using ty fc+ −
apply(cases)+ −
apply(auto simp add: lam.eq_iff lam.distinct ty.eq_iff)+ −
apply(auto simp add: Abs1_eq_iff)+ −
apply(rotate_tac 3)+ −
apply(drule_tac p="(x \<leftrightarrow> xa)" in permute_boolI)+ −
apply(perm_simp)+ −
apply(auto simp add: flip_def swap_fresh_fresh ty_fresh)+ −
done+ −
+ −
+ −
section {* EXERCISE 17 *}+ −
+ −
text {*+ −
Fill in the gaps in the t_Lam case. You will need+ −
the type substitution lemma proved above. + −
*}+ −
+ −
theorem cbv_type_preservation:+ −
assumes a: "t \<longrightarrow>cbv t'"+ −
and b: "\<Gamma> \<turnstile> t : T" + −
shows "\<Gamma> \<turnstile> t' : T"+ −
using a b+ −
proof (nominal_induct avoiding: \<Gamma> T rule: cbv.strong_induct)+ −
case (cbv1 v x t \<Gamma> T) + −
have fc: "atom x \<sharp> \<Gamma>" by fact+ −
have "\<Gamma> \<turnstile> App (Lam [x]. t) v : T" by fact+ −
then obtain T' where + −
*: "\<Gamma> \<turnstile> Lam [x]. t : T' \<rightarrow> T" and + −
**: "\<Gamma> \<turnstile> v : T'" by (rule t_App_elim)+ −
have "(x, T') # \<Gamma> \<turnstile> t : T" using * fc by (rule t_Lam_elim) (simp add: ty.eq_iff)+ −
+ −
show "\<Gamma> \<turnstile> t [x ::= v] : T " sorry+ −
qed (auto elim!: t_App_elim)+ −
+ −
text {*+ −
We can easily extend this to sequences of cbv* reductions.+ −
*}+ −
+ −
corollary cbvs_type_preservation:+ −
assumes a: "t \<longrightarrow>cbv* t'"+ −
and b: "\<Gamma> \<turnstile> t : T" + −
shows "\<Gamma> \<turnstile> t' : T"+ −
using a b+ −
by (induct) (auto intro: cbv_type_preservation)+ −
+ −
text {* + −
The type-preservation property for the machine and + −
evaluation relation. + −
*}+ −
+ −
theorem machine_type_preservation:+ −
assumes a: "<t, []> \<mapsto>* <t', []>"+ −
and b: "\<Gamma> \<turnstile> t : T" + −
shows "\<Gamma> \<turnstile> t' : T"+ −
proof -+ −
have "t \<longrightarrow>cbv* t'" using a machines_implies_cbvs by simp+ −
then show "\<Gamma> \<turnstile> t' : T" using b cbvs_type_preservation by simp+ −
qed+ −
+ −
theorem eval_type_preservation:+ −
assumes a: "t \<Down> t'"+ −
and b: "\<Gamma> \<turnstile> t : T" + −
shows "\<Gamma> \<turnstile> t' : T"+ −
proof -+ −
have "<t, []> \<mapsto>* <t', []>" using a eval_implies_machines by simp+ −
then show "\<Gamma> \<turnstile> t' : T" using b machine_type_preservation by simp+ −
qed+ −
+ −
text {* The Progress Property *}+ −
+ −
lemma canonical_tArr:+ −
assumes a: "[] \<turnstile> t : T1 \<rightarrow> T2"+ −
and b: "val t"+ −
obtains x t' where "t = Lam [x].t'"+ −
using b a by (induct) (auto) + −
+ −
theorem progress:+ −
assumes a: "[] \<turnstile> t : T"+ −
shows "(\<exists>t'. t \<longrightarrow>cbv t') \<or> (val t)"+ −
using a+ −
by (induct \<Gamma>\<equiv>"[]::ty_ctx" t T)+ −
(auto elim: canonical_tArr simp add: val.simps)+ −
+ −
text {*+ −
Done! Congratulations!+ −
*}+ −
+ −
end+ −
+ −