theory Lambda
imports
"../Nominal2"
begin
atom_decl name
nominal_datatype lam =
Var "name"
| App "lam" "lam"
| Lam x::"name" l::"lam" binds x in l ("Lam [_]. _" [100, 100] 100)
nominal_datatype sem =
L e::"env" x::"name" l::"lam" binds x "bn e" in l
| N "neu"
and neu =
V "name"
| A "neu" "sem"
and env =
ENil
| ECons "env" "name" "sem"
binder
bn
where
"bn ENil = []"
| "bn (ECons env x v) = (atom x) # (bn env)"
nominal_primrec (invariant "\<lambda>x y. case x of Inl (x1, y1) \<Rightarrow>
supp y \<subseteq> (supp y1 - set (bn x1)) \<union> (fv_bn x1) | Inr (x2, y2) \<Rightarrow> supp y \<subseteq> supp x2 \<union> supp y2")
evals :: "env \<Rightarrow> lam \<Rightarrow> sem" and
evals_aux :: "sem \<Rightarrow> sem \<Rightarrow> sem"
where
"evals ENil (Var x) = N (V x)"
| "evals (ECons tail y v) (Var x) = (if x = y then v else evals tail (Var x))"
| "atom x \<sharp> env \<Longrightarrow> evals env (Lam [x]. t) = L env x t"
| "evals env (App t1 t2) = evals_aux (evals env t1) (evals env t2)"
| "evals_aux (L cenv x t) t' = evals (ECons cenv x t') t"
| "evals_aux (N n) t' = N (A n t')"
apply(simp add: eqvt_def evals_evals_aux_graph_def)
apply(perm_simp)
apply(simp)
apply(erule evals_evals_aux_graph.induct)
apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
apply(rule conjI)
apply(rule impI)
apply(blast)
apply(rule impI)
apply(simp add: supp_at_base)
apply(blast)
apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
apply(blast)
apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
apply(blast)
apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
apply(blast)
apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
--"completeness"
apply(case_tac x)
apply(simp)
apply(case_tac a)
apply(simp)
apply(case_tac aa rule: sem_neu_env.exhaust(3))
apply(simp add: sem_neu_env.fresh)
apply(case_tac b rule: lam.exhaust)
apply(metis)+
apply(case_tac aa rule: sem_neu_env.exhaust(3))
apply(rule_tac y="b" and c="env" in lam.strong_exhaust)
apply(metis)+
apply(simp add: fresh_star_def)
apply(simp)
apply(rule_tac y="b" and c="ECons env name sem" in lam.strong_exhaust)
apply(metis)+
apply(simp add: fresh_star_def)
apply(simp)
apply(case_tac b)
apply(simp)
apply(case_tac a rule: sem_neu_env.exhaust(1))
apply(metis)+
--"compatibility"
apply(all_trivials)
apply(simp)
apply(simp)
defer
apply(simp)
apply(simp)
apply (simp add: meta_eq_to_obj_eq[OF evals_def, symmetric, unfolded fun_eq_iff])
apply (subgoal_tac "eqvt_at (\<lambda>(a, b). evals a b) (ECons cenv x t'a, t)")
apply (subgoal_tac "eqvt_at (\<lambda>(a, b). evals a b) (ECons cenva xa t'a, ta)")
apply (thin_tac "eqvt_at evals_evals_aux_sumC (Inl (ECons cenv x t'a, t))")
apply (thin_tac "eqvt_at evals_evals_aux_sumC (Inl (ECons cenva xa t'a, ta))")
apply(erule conjE)+
defer
apply (simp_all add: eqvt_at_def evals_def)[3]
apply(simp add: sem_neu_env.alpha_refl)
apply(erule conjE)+
apply(erule_tac c="(env, enva)" in Abs_lst1_fcb2)
apply(simp add: Abs_fresh_iff)
apply(simp add: fresh_star_def)
apply(perm_simp)
apply(simp add: fresh_star_Pair perm_supp_eq)
apply(perm_simp)
apply(simp add: fresh_star_Pair perm_supp_eq)
apply(simp add: sem_neu_env.bn_defs sem_neu_env.supp)
using at_set_avoiding3
apply -
apply(drule_tac x="set (atom x # bn cenv)" in meta_spec)
apply(drule_tac x="(cenv, cenva, x, xa, t, ta, t'a)" in meta_spec)
apply(drule_tac x="[atom x # bn cenv]lst. t" in meta_spec)
apply(simp (no_asm_use) add: finite_supp Abs_fresh_star_iff)
apply(drule meta_mp)
apply(simp add: fresh_star_def)
apply(erule exE)
apply(erule conjE)+
thm Abs_fresh_star_iff
apply(subgoal_tac "\<exists>c::name. atom c \<sharp> (x, xa, cenv, cenva, t, ta, t'a)")
prefer 2
apply(rule obtain_fresh)
apply(blast)
apply(erule exE)
apply(drule trans)
apply(rule sym)
apply(rule_tac a="xa" and b="c" in flip_fresh_fresh)
apply(simp add: Abs_fresh_iff)
apply(simp add: Abs_fresh_iff fresh_Pair fresh_at_base)
apply(perm_simp)
apply(simp)
apply(rotate_tac 4)
apply(drule sym)
apply(rotate_tac 5)
apply(drule trans)
apply(rule sym)
apply(rule_tac a="x" and b="c" in flip_fresh_fresh)
apply(simp add: Abs_fresh_iff)
apply(simp add: Abs_fresh_iff fresh_Pair fresh_at_base)
apply(perm_simp)
apply(simp)
(* HERE *)
apply(auto)[1]
apply(rule fresh_eqvt_at)
back
apply(assumption)
apply(simp add: finite_supp)
apply(rule_tac S="supp (env, y, x, t)" in supports_fresh)
apply(simp add: supports_def fresh_def[symmetric])
apply(perm_simp)
apply(simp add: swap_fresh_fresh fresh_Pair)
apply(simp add: finite_supp)
apply(simp add: fresh_def[symmetric])
apply(simp add: eqvt_at_def)
apply(simp add: eqvt_at_def[symmetric])
apply(perm_simp)
apply(simp add: flip_fresh_fresh)
apply(rule sym)
apply(rule trans)
sorry
(* can probably not proved by a trivial size argument *)
termination apply(lexicographic_order)
sorry
lemma [eqvt]:
shows "(p \<bullet> evals env t) = evals (p \<bullet> env) (p \<bullet> t)"
and "(p \<bullet> evals_aux v s) = evals_aux (p \<bullet> v) (p \<bullet> s)"
sorry
(* fixme: should be a provided lemma *)
lemma fv_bn_finite:
shows "finite (fv_bn env)"
apply(induct env rule: sem_neu_env.inducts(3))
apply(auto simp add: sem_neu_env.supp finite_supp)
done
lemma test:
fixes env::"env"
shows "supp (evals env t) \<subseteq> (supp t - set (bn env)) \<union> (fv_bn env)"
and "supp (evals_aux s v) \<subseteq> (supp s) \<union> (supp v)"
apply(induct env t and s v rule: evals_evals_aux.induct)
apply(simp add: sem_neu_env.supp lam.supp supp_Nil sem_neu_env.bn_defs)
apply(simp add: sem_neu_env.supp lam.supp supp_Nil supp_Cons sem_neu_env.bn_defs)
apply(rule conjI)
apply(auto)[1]
apply(rule impI)
apply(simp)
apply(simp add: supp_at_base)
apply(blast)
apply(simp)
apply(subst sem_neu_env.supp)
apply(simp add: sem_neu_env.supp lam.supp)
apply(auto)[1]
apply(simp add: lam.supp sem_neu_env.supp)
apply(blast)
apply(simp add: sem_neu_env.supp sem_neu_env.bn_defs)
apply(blast)
apply(simp add: sem_neu_env.supp)
done
nominal_primrec
reify :: "sem \<Rightarrow> lam" and
reifyn :: "neu \<Rightarrow> lam"
where
"atom x \<sharp> (env, y, t) \<Longrightarrow> reify (L env y t) = Lam [x]. (reify (evals (ECons env y (N (V x))) t))"
| "reify (N n) = reifyn n"
| "reifyn (V x) = Var x"
| "reifyn (A n d) = App (reifyn n) (reify d)"
apply(subgoal_tac "\<And>p x y. reify_reifyn_graph x y \<Longrightarrow> reify_reifyn_graph (p \<bullet> x) (p \<bullet> y)")
apply(simp add: eqvt_def)
apply(simp add: permute_fun_def)
apply(rule allI)
apply(rule ext)
apply(rule ext)
apply(rule iffI)
apply(drule_tac x="p" in meta_spec)
apply(drule_tac x="- p \<bullet> x" in meta_spec)
apply(drule_tac x="- p \<bullet> xa" in meta_spec)
apply(simp add: permute_bool_def)
apply(simp add: permute_bool_def)
apply(erule reify_reifyn_graph.induct)
apply(perm_simp)
apply(rule reify_reifyn_graph.intros)
apply(rule_tac p="-p" in permute_boolE)
apply(perm_simp add: permute_minus_cancel)
apply(simp)
apply(simp)
apply(perm_simp)
apply(rule reify_reifyn_graph.intros)
apply(simp)
apply(perm_simp)
apply(rule reify_reifyn_graph.intros)
apply(perm_simp)
apply(rule reify_reifyn_graph.intros)
apply(simp)
apply(simp)
apply(rule TrueI)
--"completeness"
apply(case_tac x)
apply(simp)
apply(case_tac a rule: sem_neu_env.exhaust(1))
apply(subgoal_tac "\<exists>x::name. atom x \<sharp> (env, name, lam)")
apply(metis)
apply(rule obtain_fresh)
apply(blast)
apply(blast)
apply(case_tac b rule: sem_neu_env.exhaust(2))
apply(simp)
apply(simp)
apply(metis)
--"compatibility"
apply(all_trivials)
defer
apply(simp)
apply(simp)
apply(simp)
apply(erule conjE)
apply (simp add: meta_eq_to_obj_eq[OF reify_def, symmetric, unfolded fun_eq_iff])
apply (subgoal_tac "eqvt_at (\<lambda>t. reify t) (evals (ECons env y (N (V x))) t)")
apply (subgoal_tac "eqvt_at (\<lambda>t. reify t) (evals (ECons enva ya (N (V xa))) ta)")
apply (thin_tac "eqvt_at reify_reifyn_sumC (Inl (evals (ECons env y (N (V x))) t))")
apply (thin_tac "eqvt_at reify_reifyn_sumC (Inl (evals (ECons enva ya (N (V xa))) ta))")
defer
apply (simp_all add: eqvt_at_def reify_def)[2]
apply(subgoal_tac "\<exists>c::name. atom c \<sharp> (x, xa, env, enva, y, ya, t, ta)")
prefer 2
apply(rule obtain_fresh)
apply(blast)
apply(erule exE)
apply(rule trans)
apply(rule sym)
apply(rule_tac a="x" and b="c" in flip_fresh_fresh)
apply(simp add: Abs_fresh_iff)
apply(simp add: Abs_fresh_iff fresh_Pair)
apply(auto)[1]
apply(rule fresh_eqvt_at)
back
apply(assumption)
apply(simp add: finite_supp)
apply(rule_tac S="supp (env, y, x, t)" in supports_fresh)
apply(simp add: supports_def fresh_def[symmetric])
apply(perm_simp)
apply(simp add: swap_fresh_fresh fresh_Pair)
apply(simp add: finite_supp)
apply(simp add: fresh_def[symmetric])
apply(simp add: eqvt_at_def)
apply(simp add: eqvt_at_def[symmetric])
apply(perm_simp)
apply(simp add: flip_fresh_fresh)
apply(rule sym)
apply(rule trans)
apply(rule sym)
apply(rule_tac a="xa" and b="c" in flip_fresh_fresh)
apply(simp add: Abs_fresh_iff)
apply(simp add: Abs_fresh_iff fresh_Pair)
apply(auto)[1]
apply(rule fresh_eqvt_at)
back
apply(assumption)
apply(simp add: finite_supp)
apply(rule_tac S="supp (enva, ya, xa, ta)" in supports_fresh)
apply(simp add: supports_def fresh_def[symmetric])
apply(perm_simp)
apply(simp add: swap_fresh_fresh fresh_Pair)
apply(simp add: finite_supp)
apply(simp add: fresh_def[symmetric])
apply(simp add: eqvt_at_def)
apply(simp add: eqvt_at_def[symmetric])
apply(perm_simp)
apply(simp add: flip_fresh_fresh)
apply(simp (no_asm) add: Abs1_eq_iff)
thm at_set_avoiding3
using at_set_avoiding3
apply -
apply(drule_tac x="set (atom y # bn env)" in meta_spec)
apply(drule_tac x="(env, enva)" in meta_spec)
apply(drule_tac x="[atom y # bn env]lst. t" in meta_spec)
apply(simp (no_asm_use) add: finite_supp)
apply(drule meta_mp)
apply(rule Abs_fresh_star)
apply(auto)[1]
apply(erule exE)
apply(erule conjE)+
apply(drule_tac q="(x \<leftrightarrow> c)" in eqvt_at_perm)
apply(perm_simp)
apply(simp add: flip_fresh_fresh fresh_Pair)
apply(drule_tac q="(xa \<leftrightarrow> c)" in eqvt_at_perm)
apply(perm_simp)
apply(simp add: flip_fresh_fresh fresh_Pair)
apply(drule sym)
(* HERE *)
apply(rotate_tac 9)
apply(drule sym)
apply(rotate_tac 9)
apply(drule trans)
apply(rule sym)
apply(rule_tac p="p" in supp_perm_eq)
apply(assumption)
apply(simp)
apply(perm_simp)
apply(simp (no_asm_use) add: Abs_eq_iff2 alphas)
apply(erule conjE | erule exE)+
apply(clarify)
apply(rule trans)
apply(rule sym)
apply(rule_tac p="pa" in perm_supp_eq)
defer
apply(rule sym)
apply(rule trans)
apply(rule sym)
apply(rule_tac p="p" in perm_supp_eq)
defer
apply(simp add: atom_eqvt)
apply(drule_tac q="(x \<leftrightarrow> c)" in eqvt_at_perm)
apply(perm_simp)
apply(simp add: flip_fresh_fresh fresh_Pair)
apply(rule sym)
apply(erule_tac Abs_lst1_fcb2')
apply(rule fresh_eqvt_at)
back
apply(drule_tac q="(c \<leftrightarrow> x)" in eqvt_at_perm)
apply(perm_simp)
apply(simp add: flip_fresh_fresh)
apply(simp add: finite_supp)
apply(rule supports_fresh)
apply(rule_tac S="supp (enva, ya, xa, ta)" in supports_fresh)
apply(simp add: supports_def fresh_def[symmetric])
apply(perm_simp)
apply(simp add: swap_fresh_fresh fresh_Pair)
apply(simp add: finite_supp)
apply(simp add: fresh_def[symmetric])
apply(simp add: eqvt_at_def)
apply(simp add: eqvt_at_def[symmetric])
apply(perm_simp)
apply(rule fresh_eqvt_at)
back
apply(drule_tac q="(c \<leftrightarrow> x)" in eqvt_at_perm)
apply(perm_simp)
apply(simp add: flip_fresh_fresh)
apply(assumption)
apply(simp add: finite_supp)
sorry
termination sorry
definition
eval :: "lam \<Rightarrow> sem"
where
"eval t = evals ENil t"
definition
normalize :: "lam \<Rightarrow> lam"
where
"normalize t = reify (eval t)"
end