all examples for strong exhausts work; recursive binders need to be treated differently; still unclean version with lots of diagnostic code
theory Nominal2_Abs
imports "Nominal2_Base"
"Nominal2_Eqvt"
"Quotient"
"Quotient_List"
"Quotient_Product"
begin
section {* Abstractions *}
fun
alpha_set
where
alpha_set[simp del]:
"alpha_set (bs, x) R f pi (cs, y) \<longleftrightarrow>
f x - bs = f y - cs \<and>
(f x - bs) \<sharp>* pi \<and>
R (pi \<bullet> x) y \<and>
pi \<bullet> bs = cs"
fun
alpha_res
where
alpha_res[simp del]:
"alpha_res (bs, x) R f pi (cs, y) \<longleftrightarrow>
f x - bs = f y - cs \<and>
(f x - bs) \<sharp>* pi \<and>
R (pi \<bullet> x) y"
fun
alpha_lst
where
alpha_lst[simp del]:
"alpha_lst (bs, x) R f pi (cs, y) \<longleftrightarrow>
f x - set bs = f y - set cs \<and>
(f x - set bs) \<sharp>* pi \<and>
R (pi \<bullet> x) y \<and>
pi \<bullet> bs = cs"
lemmas alphas = alpha_set.simps alpha_res.simps alpha_lst.simps
notation
alpha_set ("_ \<approx>set _ _ _ _" [100, 100, 100, 100, 100] 100) and
alpha_res ("_ \<approx>res _ _ _ _" [100, 100, 100, 100, 100] 100) and
alpha_lst ("_ \<approx>lst _ _ _ _" [100, 100, 100, 100, 100] 100)
section {* Mono *}
lemma [mono]:
shows "R1 \<le> R2 \<Longrightarrow> alpha_set bs R1 \<le> alpha_set bs R2"
and "R1 \<le> R2 \<Longrightarrow> alpha_res bs R1 \<le> alpha_res bs R2"
and "R1 \<le> R2 \<Longrightarrow> alpha_lst cs R1 \<le> alpha_lst cs R2"
by (case_tac [!] bs, case_tac [!] cs)
(auto simp add: le_fun_def le_bool_def alphas)
section {* Equivariance *}
lemma alpha_eqvt[eqvt]:
shows "(bs, x) \<approx>set R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>set (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
and "(bs, x) \<approx>res R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>res (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
and "(ds, x) \<approx>lst R f q (es, y) \<Longrightarrow> (p \<bullet> ds, p \<bullet> x) \<approx>lst (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> es, p \<bullet> y)"
unfolding alphas
unfolding permute_eqvt[symmetric]
unfolding set_eqvt[symmetric]
unfolding permute_fun_app_eq[symmetric]
unfolding Diff_eqvt[symmetric]
by (auto simp add: permute_bool_def fresh_star_permute_iff)
section {* Equivalence *}
lemma alpha_refl:
assumes a: "R x x"
shows "(bs, x) \<approx>set R f 0 (bs, x)"
and "(bs, x) \<approx>res R f 0 (bs, x)"
and "(cs, x) \<approx>lst R f 0 (cs, x)"
using a
unfolding alphas
unfolding fresh_star_def
by (simp_all add: fresh_zero_perm)
lemma alpha_sym:
assumes a: "R (p \<bullet> x) y \<Longrightarrow> R (- p \<bullet> y) x"
shows "(bs, x) \<approx>set R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>set R f (- p) (bs, x)"
and "(bs, x) \<approx>res R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>res R f (- p) (bs, x)"
and "(ds, x) \<approx>lst R f p (es, y) \<Longrightarrow> (es, y) \<approx>lst R f (- p) (ds, x)"
unfolding alphas fresh_star_def
using a
by (auto simp add: fresh_minus_perm)
lemma alpha_trans:
assumes a: "\<lbrakk>R (p \<bullet> x) y; R (q \<bullet> y) z\<rbrakk> \<Longrightarrow> R ((q + p) \<bullet> x) z"
shows "\<lbrakk>(bs, x) \<approx>set R f p (cs, y); (cs, y) \<approx>set R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>set R f (q + p) (ds, z)"
and "\<lbrakk>(bs, x) \<approx>res R f p (cs, y); (cs, y) \<approx>res R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>res R f (q + p) (ds, z)"
and "\<lbrakk>(es, x) \<approx>lst R f p (gs, y); (gs, y) \<approx>lst R f q (hs, z)\<rbrakk> \<Longrightarrow> (es, x) \<approx>lst R f (q + p) (hs, z)"
using a
unfolding alphas fresh_star_def
by (simp_all add: fresh_plus_perm)
lemma alpha_sym_eqvt:
assumes a: "R (p \<bullet> x) y \<Longrightarrow> R y (p \<bullet> x)"
and b: "p \<bullet> R = R"
shows "(bs, x) \<approx>set R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>set R f (- p) (bs, x)"
and "(bs, x) \<approx>res R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>res R f (- p) (bs, x)"
and "(ds, x) \<approx>lst R f p (es, y) \<Longrightarrow> (es, y) \<approx>lst R f (- p) (ds, x)"
apply(auto intro!: alpha_sym)
apply(drule_tac [!] a)
apply(rule_tac [!] p="p" in permute_boolE)
apply(perm_simp add: permute_minus_cancel b)
apply(assumption)
apply(perm_simp add: permute_minus_cancel b)
apply(assumption)
apply(perm_simp add: permute_minus_cancel b)
apply(assumption)
done
lemma alpha_set_trans_eqvt:
assumes b: "(cs, y) \<approx>set R f q (ds, z)"
and a: "(bs, x) \<approx>set R f p (cs, y)"
and d: "q \<bullet> R = R"
and c: "\<lbrakk>R (p \<bullet> x) y; R y (- q \<bullet> z)\<rbrakk> \<Longrightarrow> R (p \<bullet> x) (- q \<bullet> z)"
shows "(bs, x) \<approx>set R f (q + p) (ds, z)"
apply(rule alpha_trans)
defer
apply(rule a)
apply(rule b)
apply(drule c)
apply(rule_tac p="q" in permute_boolE)
apply(perm_simp add: permute_minus_cancel d)
apply(assumption)
apply(rotate_tac -1)
apply(drule_tac p="q" in permute_boolI)
apply(perm_simp add: permute_minus_cancel d)
apply(simp add: permute_eqvt[symmetric])
done
lemma alpha_res_trans_eqvt:
assumes b: "(cs, y) \<approx>res R f q (ds, z)"
and a: "(bs, x) \<approx>res R f p (cs, y)"
and d: "q \<bullet> R = R"
and c: "\<lbrakk>R (p \<bullet> x) y; R y (- q \<bullet> z)\<rbrakk> \<Longrightarrow> R (p \<bullet> x) (- q \<bullet> z)"
shows "(bs, x) \<approx>res R f (q + p) (ds, z)"
apply(rule alpha_trans)
defer
apply(rule a)
apply(rule b)
apply(drule c)
apply(rule_tac p="q" in permute_boolE)
apply(perm_simp add: permute_minus_cancel d)
apply(assumption)
apply(rotate_tac -1)
apply(drule_tac p="q" in permute_boolI)
apply(perm_simp add: permute_minus_cancel d)
apply(simp add: permute_eqvt[symmetric])
done
lemma alpha_lst_trans_eqvt:
assumes b: "(cs, y) \<approx>lst R f q (ds, z)"
and a: "(bs, x) \<approx>lst R f p (cs, y)"
and d: "q \<bullet> R = R"
and c: "\<lbrakk>R (p \<bullet> x) y; R y (- q \<bullet> z)\<rbrakk> \<Longrightarrow> R (p \<bullet> x) (- q \<bullet> z)"
shows "(bs, x) \<approx>lst R f (q + p) (ds, z)"
apply(rule alpha_trans)
defer
apply(rule a)
apply(rule b)
apply(drule c)
apply(rule_tac p="q" in permute_boolE)
apply(perm_simp add: permute_minus_cancel d)
apply(assumption)
apply(rotate_tac -1)
apply(drule_tac p="q" in permute_boolI)
apply(perm_simp add: permute_minus_cancel d)
apply(simp add: permute_eqvt[symmetric])
done
lemmas alpha_trans_eqvt = alpha_set_trans_eqvt alpha_res_trans_eqvt alpha_lst_trans_eqvt
section {* General Abstractions *}
fun
alpha_abs_set
where
[simp del]:
"alpha_abs_set (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>set (op=) supp p (cs, y))"
fun
alpha_abs_lst
where
[simp del]:
"alpha_abs_lst (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>lst (op=) supp p (cs, y))"
fun
alpha_abs_res
where
[simp del]:
"alpha_abs_res (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>res (op=) supp p (cs, y))"
notation
alpha_abs_set (infix "\<approx>abs'_set" 50) and
alpha_abs_lst (infix "\<approx>abs'_lst" 50) and
alpha_abs_res (infix "\<approx>abs'_res" 50)
lemmas alphas_abs = alpha_abs_set.simps alpha_abs_res.simps alpha_abs_lst.simps
lemma alphas_abs_refl:
shows "(bs, x) \<approx>abs_set (bs, x)"
and "(bs, x) \<approx>abs_res (bs, x)"
and "(cs, x) \<approx>abs_lst (cs, x)"
unfolding alphas_abs
unfolding alphas
unfolding fresh_star_def
by (rule_tac [!] x="0" in exI)
(simp_all add: fresh_zero_perm)
lemma alphas_abs_sym:
shows "(bs, x) \<approx>abs_set (cs, y) \<Longrightarrow> (cs, y) \<approx>abs_set (bs, x)"
and "(bs, x) \<approx>abs_res (cs, y) \<Longrightarrow> (cs, y) \<approx>abs_res (bs, x)"
and "(ds, x) \<approx>abs_lst (es, y) \<Longrightarrow> (es, y) \<approx>abs_lst (ds, x)"
unfolding alphas_abs
unfolding alphas
unfolding fresh_star_def
by (erule_tac [!] exE, rule_tac [!] x="-p" in exI)
(auto simp add: fresh_minus_perm)
lemma alphas_abs_trans:
shows "\<lbrakk>(bs, x) \<approx>abs_set (cs, y); (cs, y) \<approx>abs_set (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>abs_set (ds, z)"
and "\<lbrakk>(bs, x) \<approx>abs_res (cs, y); (cs, y) \<approx>abs_res (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>abs_res (ds, z)"
and "\<lbrakk>(es, x) \<approx>abs_lst (gs, y); (gs, y) \<approx>abs_lst (hs, z)\<rbrakk> \<Longrightarrow> (es, x) \<approx>abs_lst (hs, z)"
unfolding alphas_abs
unfolding alphas
unfolding fresh_star_def
apply(erule_tac [!] exE, erule_tac [!] exE)
apply(rule_tac [!] x="pa + p" in exI)
by (simp_all add: fresh_plus_perm)
lemma alphas_abs_eqvt:
shows "(bs, x) \<approx>abs_set (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>abs_set (p \<bullet> cs, p \<bullet> y)"
and "(bs, x) \<approx>abs_res (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>abs_res (p \<bullet> cs, p \<bullet> y)"
and "(ds, x) \<approx>abs_lst (es, y) \<Longrightarrow> (p \<bullet> ds, p \<bullet> x) \<approx>abs_lst (p \<bullet> es, p \<bullet> y)"
unfolding alphas_abs
unfolding alphas
unfolding set_eqvt[symmetric]
unfolding supp_eqvt[symmetric]
unfolding Diff_eqvt[symmetric]
apply(erule_tac [!] exE)
apply(rule_tac [!] x="p \<bullet> pa" in exI)
by (auto simp add: fresh_star_permute_iff permute_eqvt[symmetric])
quotient_type
'a abs_set = "(atom set \<times> 'a::pt)" / "alpha_abs_set"
and 'b abs_res = "(atom set \<times> 'b::pt)" / "alpha_abs_res"
and 'c abs_lst = "(atom list \<times> 'c::pt)" / "alpha_abs_lst"
apply(rule_tac [!] equivpI)
unfolding reflp_def refl_on_def symp_def sym_def transp_def trans_def
by (auto intro: alphas_abs_sym alphas_abs_refl alphas_abs_trans simp only:)
quotient_definition
Abs_set ("[_]set. _" [60, 60] 60)
where
"Abs_set::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_set"
is
"Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)"
quotient_definition
Abs_res ("[_]res. _" [60, 60] 60)
where
"Abs_res::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_res"
is
"Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)"
quotient_definition
Abs_lst ("[_]lst. _" [60, 60] 60)
where
"Abs_lst::atom list \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_lst"
is
"Pair::atom list \<Rightarrow> ('a::pt) \<Rightarrow> (atom list \<times> 'a)"
lemma [quot_respect]:
shows "(op= ===> op= ===> alpha_abs_set) Pair Pair"
and "(op= ===> op= ===> alpha_abs_res) Pair Pair"
and "(op= ===> op= ===> alpha_abs_lst) Pair Pair"
unfolding fun_rel_def
by (auto intro: alphas_abs_refl)
lemma [quot_respect]:
shows "(op= ===> alpha_abs_set ===> alpha_abs_set) permute permute"
and "(op= ===> alpha_abs_res ===> alpha_abs_res) permute permute"
and "(op= ===> alpha_abs_lst ===> alpha_abs_lst) permute permute"
unfolding fun_rel_def
by (auto intro: alphas_abs_eqvt simp only: Pair_eqvt)
lemma Abs_eq_iff:
shows "Abs_set bs x = Abs_set cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>set (op =) supp p (cs, y))"
and "Abs_res bs x = Abs_res cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>res (op =) supp p (cs, y))"
and "Abs_lst bsl x = Abs_lst csl y \<longleftrightarrow> (\<exists>p. (bsl, x) \<approx>lst (op =) supp p (csl, y))"
by (lifting alphas_abs)
lemma Abs_exhausts:
shows "(\<And>as (x::'a::pt). y1 = Abs_set as x \<Longrightarrow> P1) \<Longrightarrow> P1"
and "(\<And>as (x::'a::pt). y2 = Abs_res as x \<Longrightarrow> P2) \<Longrightarrow> P2"
and "(\<And>as (x::'a::pt). y3 = Abs_lst as x \<Longrightarrow> P3) \<Longrightarrow> P3"
by (lifting prod.exhaust[where 'a="atom set" and 'b="'a"]
prod.exhaust[where 'a="atom set" and 'b="'a"]
prod.exhaust[where 'a="atom list" and 'b="'a"])
instantiation abs_set :: (pt) pt
begin
quotient_definition
"permute_abs_set::perm \<Rightarrow> ('a::pt abs_set) \<Rightarrow> 'a abs_set"
is
"permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)"
lemma permute_Abs_set[simp]:
fixes x::"'a::pt"
shows "(p \<bullet> (Abs_set as x)) = Abs_set (p \<bullet> as) (p \<bullet> x)"
by (lifting permute_prod.simps[where 'a="atom set" and 'b="'a"])
instance
apply(default)
apply(case_tac [!] x rule: Abs_exhausts(1))
apply(simp_all)
done
end
instantiation abs_res :: (pt) pt
begin
quotient_definition
"permute_abs_res::perm \<Rightarrow> ('a::pt abs_res) \<Rightarrow> 'a abs_res"
is
"permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)"
lemma permute_Abs_res[simp]:
fixes x::"'a::pt"
shows "(p \<bullet> (Abs_res as x)) = Abs_res (p \<bullet> as) (p \<bullet> x)"
by (lifting permute_prod.simps[where 'a="atom set" and 'b="'a"])
instance
apply(default)
apply(case_tac [!] x rule: Abs_exhausts(2))
apply(simp_all)
done
end
instantiation abs_lst :: (pt) pt
begin
quotient_definition
"permute_abs_lst::perm \<Rightarrow> ('a::pt abs_lst) \<Rightarrow> 'a abs_lst"
is
"permute:: perm \<Rightarrow> (atom list \<times> 'a::pt) \<Rightarrow> (atom list \<times> 'a::pt)"
lemma permute_Abs_lst[simp]:
fixes x::"'a::pt"
shows "(p \<bullet> (Abs_lst as x)) = Abs_lst (p \<bullet> as) (p \<bullet> x)"
by (lifting permute_prod.simps[where 'a="atom list" and 'b="'a"])
instance
apply(default)
apply(case_tac [!] x rule: Abs_exhausts(3))
apply(simp_all)
done
end
lemmas permute_Abs[eqvt] = permute_Abs_set permute_Abs_res permute_Abs_lst
lemma Abs_swap1:
assumes a1: "a \<notin> (supp x) - bs"
and a2: "b \<notin> (supp x) - bs"
shows "Abs_set bs x = Abs_set ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x)"
and "Abs_res bs x = Abs_res ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x)"
unfolding Abs_eq_iff
unfolding alphas
unfolding supp_eqvt[symmetric] Diff_eqvt[symmetric]
unfolding fresh_star_def fresh_def
unfolding swap_set_not_in[OF a1 a2]
using a1 a2
by (rule_tac [!] x="(a \<rightleftharpoons> b)" in exI)
(auto simp add: supp_perm swap_atom)
lemma Abs_swap2:
assumes a1: "a \<notin> (supp x) - (set bs)"
and a2: "b \<notin> (supp x) - (set bs)"
shows "Abs_lst bs x = Abs_lst ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x)"
unfolding Abs_eq_iff
unfolding alphas
unfolding supp_eqvt[symmetric] Diff_eqvt[symmetric] set_eqvt[symmetric]
unfolding fresh_star_def fresh_def
unfolding swap_set_not_in[OF a1 a2]
using a1 a2
by (rule_tac [!] x="(a \<rightleftharpoons> b)" in exI)
(auto simp add: supp_perm swap_atom)
lemma Abs_supports:
shows "((supp x) - as) supports (Abs_set as x)"
and "((supp x) - as) supports (Abs_res as x)"
and "((supp x) - set bs) supports (Abs_lst bs x)"
unfolding supports_def
unfolding permute_Abs
by (simp_all add: Abs_swap1[symmetric] Abs_swap2[symmetric])
function
supp_set :: "('a::pt) abs_set \<Rightarrow> atom set"
where
"supp_set (Abs_set as x) = supp x - as"
apply(case_tac x rule: Abs_exhausts(1))
apply(simp)
apply(simp add: Abs_eq_iff alphas_abs alphas)
done
termination supp_set
by (auto intro!: local.termination)
function
supp_res :: "('a::pt) abs_res \<Rightarrow> atom set"
where
"supp_res (Abs_res as x) = supp x - as"
apply(case_tac x rule: Abs_exhausts(2))
apply(simp)
apply(simp add: Abs_eq_iff alphas_abs alphas)
done
termination supp_res
by (auto intro!: local.termination)
function
supp_lst :: "('a::pt) abs_lst \<Rightarrow> atom set"
where
"supp_lst (Abs_lst cs x) = (supp x) - (set cs)"
apply(case_tac x rule: Abs_exhausts(3))
apply(simp)
apply(simp add: Abs_eq_iff alphas_abs alphas)
done
termination supp_lst
by (auto intro!: local.termination)
lemma [eqvt]:
shows "(p \<bullet> supp_set x) = supp_set (p \<bullet> x)"
and "(p \<bullet> supp_res y) = supp_res (p \<bullet> y)"
and "(p \<bullet> supp_lst z) = supp_lst (p \<bullet> z)"
apply(case_tac x rule: Abs_exhausts(1))
apply(simp add: supp_eqvt Diff_eqvt)
apply(case_tac y rule: Abs_exhausts(2))
apply(simp add: supp_eqvt Diff_eqvt)
apply(case_tac z rule: Abs_exhausts(3))
apply(simp add: supp_eqvt Diff_eqvt set_eqvt)
done
lemma Abs_fresh_aux:
shows "a \<sharp> Abs bs x \<Longrightarrow> a \<sharp> supp_set (Abs bs x)"
and "a \<sharp> Abs_res bs x \<Longrightarrow> a \<sharp> supp_res (Abs_res bs x)"
and "a \<sharp> Abs_lst cs x \<Longrightarrow> a \<sharp> supp_lst (Abs_lst cs x)"
by (rule_tac [!] fresh_fun_eqvt_app)
(simp_all only: eqvts_raw)
lemma Abs_supp_subset1:
assumes a: "finite (supp x)"
shows "(supp x) - as \<subseteq> supp (Abs_set as x)"
and "(supp x) - as \<subseteq> supp (Abs_res as x)"
and "(supp x) - (set bs) \<subseteq> supp (Abs_lst bs x)"
unfolding supp_conv_fresh
by (auto dest!: Abs_fresh_aux)
(simp_all add: fresh_def supp_finite_atom_set a)
lemma Abs_supp_subset2:
assumes a: "finite (supp x)"
shows "supp (Abs_set as x) \<subseteq> (supp x) - as"
and "supp (Abs_res as x) \<subseteq> (supp x) - as"
and "supp (Abs_lst bs x) \<subseteq> (supp x) - (set bs)"
by (rule_tac [!] supp_is_subset)
(simp_all add: Abs_supports a)
lemma Abs_finite_supp:
assumes a: "finite (supp x)"
shows "supp (Abs_set as x) = (supp x) - as"
and "supp (Abs_res as x) = (supp x) - as"
and "supp (Abs_lst bs x) = (supp x) - (set bs)"
by (rule_tac [!] subset_antisym)
(simp_all add: Abs_supp_subset1[OF a] Abs_supp_subset2[OF a])
lemma supp_Abs:
fixes x::"'a::fs"
shows "supp (Abs_set as x) = (supp x) - as"
and "supp (Abs_res as x) = (supp x) - as"
and "supp (Abs_lst bs x) = (supp x) - (set bs)"
by (rule_tac [!] Abs_finite_supp)
(simp_all add: finite_supp)
instance abs_set :: (fs) fs
apply(default)
apply(case_tac x rule: Abs_exhausts(1))
apply(simp add: supp_Abs finite_supp)
done
instance abs_res :: (fs) fs
apply(default)
apply(case_tac x rule: Abs_exhausts(2))
apply(simp add: supp_Abs finite_supp)
done
instance abs_lst :: (fs) fs
apply(default)
apply(case_tac x rule: Abs_exhausts(3))
apply(simp add: supp_Abs finite_supp)
done
lemma Abs_fresh_iff:
fixes x::"'a::fs"
shows "a \<sharp> Abs_set bs x \<longleftrightarrow> a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x)"
and "a \<sharp> Abs_res bs x \<longleftrightarrow> a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x)"
and "a \<sharp> Abs_lst cs x \<longleftrightarrow> a \<in> (set cs) \<or> (a \<notin> (set cs) \<and> a \<sharp> x)"
unfolding fresh_def
unfolding supp_Abs
by auto
lemma Abs_fresh_star_iff:
fixes x::"'a::fs"
shows "as \<sharp>* Abs_set bs x \<longleftrightarrow> (as - bs) \<sharp>* x"
and "as \<sharp>* Abs_res bs x \<longleftrightarrow> (as - bs) \<sharp>* x"
and "as \<sharp>* Abs_lst cs x \<longleftrightarrow> (as - set cs) \<sharp>* x"
unfolding fresh_star_def
by (auto simp add: Abs_fresh_iff)
lemma Abs_fresh_star:
fixes x::"'a::fs"
shows "as \<subseteq> as' \<Longrightarrow> as \<sharp>* Abs_set as' x"
and "as \<subseteq> as' \<Longrightarrow> as \<sharp>* Abs_res as' x"
and "bs \<subseteq> set bs' \<Longrightarrow> bs \<sharp>* Abs_lst bs' x"
unfolding fresh_star_def
by(auto simp add: Abs_fresh_iff)
subsection {* Renaming of bodies of abstractions *}
lemma Abs_rename_set:
fixes x::"'a::fs"
assumes a: "(p \<bullet> bs) \<sharp>* (bs, x)"
and b: "finite bs"
shows "\<exists>q. [bs]set. x = [p \<bullet> bs]set. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs"
proof -
from a b have "p \<bullet> bs \<inter> bs = {}" using at_fresh_star_inter by (auto simp add: fresh_star_Pair)
with set_renaming_perm
obtain q where *: "q \<bullet> bs = p \<bullet> bs" and **: "supp q \<subseteq> bs \<union> (p \<bullet> bs)" using b by metis
have "[bs]set. x = q \<bullet> ([bs]set. x)"
apply(rule perm_supp_eq[symmetric])
using a **
unfolding fresh_star_Pair
unfolding Abs_fresh_star_iff
unfolding fresh_star_def
by auto
also have "\<dots> = [q \<bullet> bs]set. (q \<bullet> x)" by simp
finally have "[bs]set. x = [p \<bullet> bs]set. (q \<bullet> x)" by (simp add: *)
then show "\<exists>q. [bs]set. x = [p \<bullet> bs]set. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs" using * by metis
qed
lemma Abs_rename_res:
fixes x::"'a::fs"
assumes a: "(p \<bullet> bs) \<sharp>* (bs, x)"
and b: "finite bs"
shows "\<exists>q. [bs]res. x = [p \<bullet> bs]res. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs"
proof -
from a b have "p \<bullet> bs \<inter> bs = {}" using at_fresh_star_inter by (simp add: fresh_star_Pair)
with set_renaming_perm
obtain q where *: "q \<bullet> bs = p \<bullet> bs" and **: "supp q \<subseteq> bs \<union> (p \<bullet> bs)" using b by metis
have "[bs]res. x = q \<bullet> ([bs]res. x)"
apply(rule perm_supp_eq[symmetric])
using a **
unfolding fresh_star_Pair
unfolding Abs_fresh_star_iff
unfolding fresh_star_def
by auto
also have "\<dots> = [q \<bullet> bs]res. (q \<bullet> x)" by simp
finally have "[bs]res. x = [p \<bullet> bs]res. (q \<bullet> x)" by (simp add: *)
then show "\<exists>q. [bs]res. x = [p \<bullet> bs]res. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs" using * by metis
qed
lemma Abs_rename_lst:
fixes x::"'a::fs"
assumes a: "(p \<bullet> (set bs)) \<sharp>* (bs, x)"
shows "\<exists>q. [bs]lst. x = [p \<bullet> bs]lst. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs"
proof -
from a have "p \<bullet> (set bs) \<inter> (set bs) = {}" using at_fresh_star_inter
by (simp add: fresh_star_Pair fresh_star_set)
with list_renaming_perm
obtain q where *: "q \<bullet> bs = p \<bullet> bs" and **: "supp q \<subseteq> set bs \<union> (p \<bullet> set bs)" by metis
have "[bs]lst. x = q \<bullet> ([bs]lst. x)"
apply(rule perm_supp_eq[symmetric])
using a **
unfolding fresh_star_Pair
unfolding Abs_fresh_star_iff
unfolding fresh_star_def
by auto
also have "\<dots> = [q \<bullet> bs]lst. (q \<bullet> x)" by simp
finally have "[bs]lst. x = [p \<bullet> bs]lst. (q \<bullet> x)" by (simp add: *)
then show "\<exists>q. [bs]lst. x = [p \<bullet> bs]lst. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs" using * by metis
qed
text {* for deep recursive binders *}
lemma Abs_rename_set':
fixes x::"'a::fs"
assumes a: "(p \<bullet> bs) \<sharp>* (bs, x)"
and b: "finite bs"
shows "\<exists>q. [bs]set. x = [q \<bullet> bs]set. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs"
using Abs_rename_set[OF a b] by metis
lemma Abs_rename_res':
fixes x::"'a::fs"
assumes a: "(p \<bullet> bs) \<sharp>* (bs, x)"
and b: "finite bs"
shows "\<exists>q. [bs]res. x = [q \<bullet> bs]res. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs"
using Abs_rename_res[OF a b] by metis
lemma Abs_rename_lst':
fixes x::"'a::fs"
assumes a: "(p \<bullet> (set bs)) \<sharp>* (bs, x)"
shows "\<exists>q. [bs]lst. x = [q \<bullet> bs]lst. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs"
using Abs_rename_lst[OF a] by metis
section {* Infrastructure for building tuples of relations and functions *}
fun
prod_fv :: "('a \<Rightarrow> atom set) \<Rightarrow> ('b \<Rightarrow> atom set) \<Rightarrow> ('a \<times> 'b) \<Rightarrow> atom set"
where
"prod_fv fv1 fv2 (x, y) = fv1 x \<union> fv2 y"
definition
prod_alpha :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<times> 'b \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool)"
where
"prod_alpha = prod_rel"
lemma [quot_respect]:
shows "((R1 ===> op =) ===> (R2 ===> op =) ===> prod_rel R1 R2 ===> op =) prod_fv prod_fv"
unfolding fun_rel_def
unfolding prod_rel_def
by auto
lemma [quot_preserve]:
assumes q1: "Quotient R1 abs1 rep1"
and q2: "Quotient R2 abs2 rep2"
shows "((abs1 ---> id) ---> (abs2 ---> id) ---> map_pair rep1 rep2 ---> id) prod_fv = prod_fv"
by (simp add: fun_eq_iff Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
lemma [mono]:
shows "A <= B \<Longrightarrow> C <= D ==> prod_alpha A C <= prod_alpha B D"
unfolding prod_alpha_def
by auto
lemma [eqvt]:
shows "p \<bullet> prod_alpha A B x y = prod_alpha (p \<bullet> A) (p \<bullet> B) (p \<bullet> x) (p \<bullet> y)"
unfolding prod_alpha_def
unfolding prod_rel_def
by (perm_simp) (rule refl)
lemma [eqvt]:
shows "p \<bullet> prod_fv A B (x, y) = prod_fv (p \<bullet> A) (p \<bullet> B) (p \<bullet> x, p \<bullet> y)"
unfolding prod_fv.simps
by (perm_simp) (rule refl)
lemma prod_fv_supp:
shows "prod_fv supp supp = supp"
by (rule ext)
(auto simp add: prod_fv.simps supp_Pair)
lemma prod_alpha_eq:
shows "prod_alpha (op=) (op=) = (op=)"
unfolding prod_alpha_def
by (auto intro!: ext)
end