all examples for strong exhausts work; recursive binders need to be treated differently; still unclean version with lots of diagnostic code
theory Let
imports "../Nominal2"
begin
atom_decl name
nominal_datatype trm =
Var "name"
| App "trm" "trm"
| Lam x::"name" t::"trm" bind x in t
| Let as::"assn" t::"trm" bind "bn as" in t
and assn =
ANil
| ACons "name" "trm" "assn"
binder
bn
where
"bn ANil = []"
| "bn (ACons x t as) = (atom x) # (bn as)"
thm at_set_avoiding2
thm trm_assn.fv_defs
thm trm_assn.eq_iff
thm trm_assn.bn_defs
thm trm_assn.perm_simps
thm trm_assn.induct
thm trm_assn.inducts
thm trm_assn.distinct
thm trm_assn.supp
thm trm_assn.fresh
thm trm_assn.exhaust[where y="t", no_vars]
lemmas permute_bn = permute_bn_raw.simps[quot_lifted]
lemma uu:
shows "alpha_bn as (permute_bn p as)"
apply(induct as rule: trm_assn.inducts(2))
apply(auto)[4]
apply(simp add: permute_bn)
apply(simp add: trm_assn.eq_iff)
apply(simp add: permute_bn)
apply(simp add: trm_assn.eq_iff)
done
lemma tt:
shows "(p \<bullet> bn as) = bn (permute_bn p as)"
apply(induct as rule: trm_assn.inducts(2))
apply(auto)[4]
apply(simp add: permute_bn trm_assn.bn_defs)
apply(simp add: permute_bn trm_assn.bn_defs)
apply(simp add: atom_eqvt)
done
lemma strong_exhaust1:
fixes c::"'a::fs"
assumes "\<And>name. y = Var name \<Longrightarrow> P"
and "\<And>trm1 trm2. y = App trm1 trm2 \<Longrightarrow> P"
and "\<And>name trm. \<lbrakk>{atom name} \<sharp>* c; y = Lam name trm\<rbrakk> \<Longrightarrow> P"
and "\<And>assn trm. \<lbrakk>set (bn assn) \<sharp>* c; y = Let assn trm\<rbrakk> \<Longrightarrow> P"
shows "P"
apply(rule_tac y="y" in trm_assn.exhaust(1))
apply(rule assms(1))
apply(assumption)
apply(rule assms(2))
apply(assumption)
apply(subgoal_tac "\<exists>q. (q \<bullet> {atom name}) \<sharp>* c \<and> supp (Lam name trm) \<sharp>* q")
apply(erule exE)
apply(erule conjE)
apply(rule assms(3))
apply(perm_simp)
apply(assumption)
apply(drule supp_perm_eq[symmetric])
apply(simp)
apply(rule at_set_avoiding2)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: trm_assn.fresh fresh_star_def)
apply(subgoal_tac "\<exists>q. (q \<bullet> (set (bn assn))) \<sharp>* (c::'a::fs) \<and> supp ([bn assn]lst.trm) \<sharp>* q")
apply(erule exE)
apply(erule conjE)
apply(simp add: set_eqvt)
apply(subst (asm) tt)
apply(rule_tac assms(4))
apply(simp)
apply(simp add: trm_assn.eq_iff)
apply(drule supp_perm_eq[symmetric])
apply(simp)
apply(simp add: tt uu)
apply(rule at_set_avoiding2)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: Abs_fresh_star)
done
lemma strong_exhaust2:
assumes "as = ANil \<Longrightarrow> P"
and "\<And>x t assn. \<lbrakk>as = ACons x t assn\<rbrakk> \<Longrightarrow> P"
shows "P"
apply(rule_tac y="as" in trm_assn.exhaust(2))
apply(rule assms(1))
apply(assumption)
apply(rule assms(2))
apply(assumption)+
done
lemma
fixes t::trm
and as::assn
and c::"'a::fs"
assumes a1: "\<And>x c. P1 c (Var x)"
and a2: "\<And>t1 t2 c. \<lbrakk>\<And>d. P1 d t1; \<And>d. P1 d t2\<rbrakk> \<Longrightarrow> P1 c (App t1 t2)"
and a3: "\<And>x t c. \<lbrakk>{atom x} \<sharp>* c; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Lam x t)"
and a4: "\<And>as t c. \<lbrakk>set (bn as) \<sharp>* c; \<And>d. P2 d as; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Let as t)"
and a5: "\<And>c. P2 c ANil"
and a6: "\<And>x t as c. \<lbrakk>\<And>d. P1 d t; \<And>d. P2 d as\<rbrakk> \<Longrightarrow> P2 c (ACons x t as)"
shows "P1 c t" "P2 c as"
using assms
apply(induction_schema)
apply(rule_tac y="t" in strong_exhaust1)
apply(blast)
apply(blast)
apply(blast)
apply(blast)
apply(rule_tac as="as" in strong_exhaust2)
apply(blast)
apply(blast)
apply(relation "measure (sum_case (\<lambda>y. size (snd y)) (\<lambda>z. size (snd z)))")
apply(simp_all add: trm_assn.size)
done
text {* *}
(*
proof -
have x: "\<And>(p::perm) (c::'a::fs). P1 c (p \<bullet> t)"
and y: "\<And>(p::perm) (c::'a::fs). P2 c (p \<bullet> as)"
apply(induct rule: trm_assn.inducts)
apply(simp)
apply(rule a1)
apply(simp)
apply(rule a2)
apply(assumption)
apply(assumption)
-- "lam case"
apply(simp)
apply(subgoal_tac "\<exists>q. (q \<bullet> {atom (p \<bullet> name)}) \<sharp>* c \<and> supp (Lam (p \<bullet> name) (p \<bullet> trm)) \<sharp>* q")
apply(erule exE)
apply(erule conjE)
apply(drule supp_perm_eq[symmetric])
apply(simp)
apply(thin_tac "?X = ?Y")
apply(rule a3)
apply(simp add: atom_eqvt permute_set_eq)
apply(simp only: permute_plus[symmetric])
apply(rule at_set_avoiding2)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: freshs fresh_star_def)
--"let case"
apply(simp)
thm trm_assn.eq_iff
thm eq_iffs
apply(subgoal_tac "\<exists>q. (q \<bullet> set (bn (p \<bullet> assn))) \<sharp>* c \<and> supp (Abs_lst (bn (p \<bullet> assn)) (p \<bullet> trm)) \<sharp>* q")
apply(erule exE)
apply(erule conjE)
prefer 2
apply(rule at_set_avoiding2)
apply(rule fin_bn)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: abs_fresh)
apply(rule_tac t = "Let (p \<bullet> assn) (p \<bullet> trm)" in subst)
prefer 2
apply(rule a4)
prefer 4
apply(simp add: eq_iffs)
apply(rule conjI)
prefer 2
apply(simp add: set_eqvt trm_assn.fv_bn_eqvt)
apply(subst permute_plus[symmetric])
apply(blast)
prefer 2
apply(simp add: eq_iffs)
thm eq_iffs
apply(subst permute_plus[symmetric])
apply(blast)
apply(simp add: supps)
apply(simp add: fresh_star_def freshs)
apply(drule supp_perm_eq[symmetric])
apply(simp)
apply(simp add: eq_iffs)
apply(simp)
apply(thin_tac "?X = ?Y")
apply(rule a4)
apply(simp add: set_eqvt trm_assn.fv_bn_eqvt)
apply(subst permute_plus[symmetric])
apply(blast)
apply(subst permute_plus[symmetric])
apply(blast)
apply(simp add: supps)
thm at_set_avoiding2
--"HERE"
apply(rule at_set_avoiding2)
apply(rule fin_bn)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: fresh_star_def freshs)
apply(rule ballI)
apply(simp add: eqvts permute_bn)
apply(rule a5)
apply(simp add: permute_bn)
apply(rule a6)
apply simp
apply simp
done
then have a: "P1 c (0 \<bullet> t)" by blast
have "P2 c (permute_bn 0 (0 \<bullet> l))" using b' by blast
then show "P1 c t" and "P2 c l" using a permute_bn_zero by simp_all
qed
*)
text {* *}
(*
primrec
permute_bn_raw
where
"permute_bn_raw pi (Lnil_raw) = Lnil_raw"
| "permute_bn_raw pi (Lcons_raw a t l) = Lcons_raw (pi \<bullet> a) t (permute_bn_raw pi l)"
quotient_definition
"permute_bn :: perm \<Rightarrow> lts \<Rightarrow> lts"
is
"permute_bn_raw"
lemma [quot_respect]: "((op =) ===> alpha_lts_raw ===> alpha_lts_raw) permute_bn_raw permute_bn_raw"
apply simp
apply clarify
apply (erule alpha_trm_raw_alpha_lts_raw_alpha_bn_raw.inducts)
apply (rule TrueI)+
apply simp_all
apply (rule_tac [!] alpha_trm_raw_alpha_lts_raw_alpha_bn_raw.intros)
apply simp_all
done
lemmas permute_bn = permute_bn_raw.simps[quot_lifted]
lemma permute_bn_zero:
"permute_bn 0 a = a"
apply(induct a rule: trm_lts.inducts(2))
apply(rule TrueI)+
apply(simp_all add:permute_bn)
done
lemma permute_bn_add:
"permute_bn (p + q) a = permute_bn p (permute_bn q a)"
oops
lemma permute_bn_alpha_bn: "alpha_bn lts (permute_bn q lts)"
apply(induct lts rule: trm_lts.inducts(2))
apply(rule TrueI)+
apply(simp_all add:permute_bn eqvts trm_lts.eq_iff)
done
lemma perm_bn:
"p \<bullet> bn l = bn(permute_bn p l)"
apply(induct l rule: trm_lts.inducts(2))
apply(rule TrueI)+
apply(simp_all add:permute_bn eqvts)
done
lemma fv_perm_bn:
"fv_bn l = fv_bn (permute_bn p l)"
apply(induct l rule: trm_lts.inducts(2))
apply(rule TrueI)+
apply(simp_all add:permute_bn eqvts)
done
lemma Lt_subst:
"supp (Abs_lst (bn lts) trm) \<sharp>* q \<Longrightarrow> (Lt lts trm) = Lt (permute_bn q lts) (q \<bullet> trm)"
apply (simp add: trm_lts.eq_iff permute_bn_alpha_bn)
apply (rule_tac x="q" in exI)
apply (simp add: alphas)
apply (simp add: perm_bn[symmetric])
apply(rule conjI)
apply(drule supp_perm_eq)
apply(simp add: abs_eq_iff)
apply(simp add: alphas_abs alphas)
apply(drule conjunct1)
apply (simp add: trm_lts.supp)
apply(simp add: supp_abs)
apply (simp add: trm_lts.supp)
done
lemma fin_bn:
"finite (set (bn l))"
apply(induct l rule: trm_lts.inducts(2))
apply(simp_all add:permute_bn eqvts)
done
thm trm_lts.inducts[no_vars]
lemma
fixes t::trm
and l::lts
and c::"'a::fs"
assumes a1: "\<And>name c. P1 c (Vr name)"
and a2: "\<And>trm1 trm2 c. \<lbrakk>\<And>d. P1 d trm1; \<And>d. P1 d trm2\<rbrakk> \<Longrightarrow> P1 c (Ap trm1 trm2)"
and a3: "\<And>name trm c. \<lbrakk>atom name \<sharp> c; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lm name trm)"
and a4: "\<And>lts trm c. \<lbrakk>set (bn lts) \<sharp>* c; \<And>d. P2 d lts; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lt lts trm)"
and a5: "\<And>c. P2 c Lnil"
and a6: "\<And>name trm lts c. \<lbrakk>\<And>d. P1 d trm; \<And>d. P2 d lts\<rbrakk> \<Longrightarrow> P2 c (Lcons name trm lts)"
shows "P1 c t" and "P2 c l"
proof -
have "(\<And>(p::perm) (c::'a::fs). P1 c (p \<bullet> t))" and
b': "(\<And>(p::perm) (q::perm) (c::'a::fs). P2 c (permute_bn p (q \<bullet> l)))"
apply(induct rule: trm_lts.inducts)
apply(simp)
apply(rule a1)
apply(simp)
apply(rule a2)
apply(simp)
apply(simp)
apply(simp)
apply(subgoal_tac "\<exists>q. (q \<bullet> (atom (p \<bullet> name))) \<sharp> c \<and> supp (Lm (p \<bullet> name) (p \<bullet> trm)) \<sharp>* q")
apply(erule exE)
apply(rule_tac t="Lm (p \<bullet> name) (p \<bullet> trm)"
and s="q\<bullet> Lm (p \<bullet> name) (p \<bullet> trm)" in subst)
apply(rule supp_perm_eq)
apply(simp)
apply(simp)
apply(rule a3)
apply(simp add: atom_eqvt)
apply(subst permute_plus[symmetric])
apply(blast)
apply(rule at_set_avoiding2_atom)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: fresh_def)
apply(simp add: trm_lts.fv[simplified trm_lts.supp])
apply(simp)
apply(subgoal_tac "\<exists>q. (q \<bullet> set (bn (p \<bullet> lts))) \<sharp>* c \<and> supp (Abs_lst (bn (p \<bullet> lts)) (p \<bullet> trm)) \<sharp>* q")
apply(erule exE)
apply(erule conjE)
thm Lt_subst
apply(subst Lt_subst)
apply assumption
apply(rule a4)
apply(simp add:perm_bn[symmetric])
apply(simp add: eqvts)
apply (simp add: fresh_star_def fresh_def)
apply(rotate_tac 1)
apply(drule_tac x="q + p" in meta_spec)
apply(simp)
apply(rule at_set_avoiding2)
apply(rule fin_bn)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: fresh_star_def fresh_def supp_abs)
apply(simp add: eqvts permute_bn)
apply(rule a5)
apply(simp add: permute_bn)
apply(rule a6)
apply simp
apply simp
done
then have a: "P1 c (0 \<bullet> t)" by blast
have "P2 c (permute_bn 0 (0 \<bullet> l))" using b' by blast
then show "P1 c t" and "P2 c l" using a permute_bn_zero by simp_all
qed
lemma lets_bla:
"x \<noteq> z \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> y \<Longrightarrow>(Lt (Lcons x (Vr y) Lnil) (Vr x)) \<noteq> (Lt (Lcons x (Vr z) Lnil) (Vr x))"
by (simp add: trm_lts.eq_iff)
lemma lets_ok:
"(Lt (Lcons x (Vr y) Lnil) (Vr x)) = (Lt (Lcons y (Vr y) Lnil) (Vr y))"
apply (simp add: trm_lts.eq_iff)
apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
apply (simp_all add: alphas eqvts supp_at_base fresh_star_def)
done
lemma lets_ok3:
"x \<noteq> y \<Longrightarrow>
(Lt (Lcons x (Ap (Vr y) (Vr x)) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
(Lt (Lcons y (Ap (Vr x) (Vr y)) (Lcons x (Vr x) Lnil)) (Ap (Vr x) (Vr y)))"
apply (simp add: alphas trm_lts.eq_iff)
done
lemma lets_not_ok1:
"x \<noteq> y \<Longrightarrow>
(Lt (Lcons x (Vr x) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
(Lt (Lcons y (Vr x) (Lcons x (Vr y) Lnil)) (Ap (Vr x) (Vr y)))"
apply (simp add: alphas trm_lts.eq_iff fresh_star_def eqvts)
done
lemma lets_nok:
"x \<noteq> y \<Longrightarrow> x \<noteq> z \<Longrightarrow> z \<noteq> y \<Longrightarrow>
(Lt (Lcons x (Ap (Vr z) (Vr z)) (Lcons y (Vr z) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
(Lt (Lcons y (Vr z) (Lcons x (Ap (Vr z) (Vr z)) Lnil)) (Ap (Vr x) (Vr y)))"
apply (simp add: alphas trm_lts.eq_iff fresh_star_def)
done
*)
end