theory Lambdaimports "../Nominal2" beginatom_decl namenominal_datatype lam = Var "name"| App "lam" "lam"| Lam x::"name" l::"lam" bind x in l ("Lam [_]. _" [100, 100] 100)lemma fresh_fun_eqvt_app3: assumes a: "eqvt f" and b: "a \<sharp> x" "a \<sharp> y" "a \<sharp> z" shows "a \<sharp> f x y z" using fresh_fun_eqvt_app[OF a b(1)] a b by (metis fresh_fun_app)lemma fresh_fun_eqvt_app4: assumes a: "eqvt f" and b: "a \<sharp> x" "a \<sharp> y" "a \<sharp> z" "a \<sharp> w" shows "a \<sharp> f x y z w" using fresh_fun_eqvt_app[OF a b(1)] a b by (metis fresh_fun_app)lemma the_default_pty: assumes f_def: "f == (\<lambda>x::'a. THE_default d (G x))" and unique: "\<exists>!y. G x y" and pty: "\<And>x y. G x y \<Longrightarrow> P x y" shows "P x (f x)" apply(subst f_def) apply (rule ex1E[OF unique]) apply (subst THE_default1_equality[OF unique]) apply assumption apply (rule pty) apply assumption donelemma Abs_lst1_fcb2: fixes a b :: "'a :: at" and S T :: "'b :: fs" and c::"'c::fs" assumes e: "(Abs_lst [atom a] T) = (Abs_lst [atom b] S)" and fcb: "\<And>a T. atom a \<sharp> f a T c" and fresh: "{atom a, atom b} \<sharp>* c" and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a T c) = f (p \<bullet> a) (p \<bullet> T) c" and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b S c) = f (p \<bullet> b) (p \<bullet> S) c" shows "f a T c = f b S c"proof - have fin1: "finite (supp (f a T c))" apply(rule_tac S="supp (a, T, c)" in supports_finite) apply(simp add: supports_def) apply(simp add: fresh_def[symmetric]) apply(clarify) apply(subst perm1) apply(simp add: supp_swap fresh_star_def) apply(simp add: swap_fresh_fresh fresh_Pair) apply(simp add: finite_supp) done have fin2: "finite (supp (f b S c))" apply(rule_tac S="supp (b, S, c)" in supports_finite) apply(simp add: supports_def) apply(simp add: fresh_def[symmetric]) apply(clarify) apply(subst perm2) apply(simp add: supp_swap fresh_star_def) apply(simp add: swap_fresh_fresh fresh_Pair) apply(simp add: finite_supp) done obtain d::"'a::at" where fr: "atom d \<sharp> (a, b, S, T, c, f a T c, f b S c)" using obtain_fresh'[where x="(a, b, S, T, c, f a T c, f b S c)"] apply(auto simp add: finite_supp supp_Pair fin1 fin2) done have "(a \<leftrightarrow> d) \<bullet> (Abs_lst [atom a] T) = (b \<leftrightarrow> d) \<bullet> (Abs_lst [atom b] S)" apply(simp (no_asm_use) only: flip_def) apply(subst swap_fresh_fresh) apply(simp add: Abs_fresh_iff) using fr apply(simp add: Abs_fresh_iff) apply(subst swap_fresh_fresh) apply(simp add: Abs_fresh_iff) using fr apply(simp add: Abs_fresh_iff) apply(rule e) done then have "Abs_lst [atom d] ((a \<leftrightarrow> d) \<bullet> T) = Abs_lst [atom d] ((b \<leftrightarrow> d) \<bullet> S)" apply (simp add: swap_atom flip_def) done then have eq: "(a \<leftrightarrow> d) \<bullet> T = (b \<leftrightarrow> d) \<bullet> S" by (simp add: Abs1_eq_iff) have "f a T c = (a \<leftrightarrow> d) \<bullet> f a T c" unfolding flip_def apply(rule sym) apply(rule swap_fresh_fresh) using fcb[where a="a"] apply(simp) using fr apply(simp add: fresh_Pair) done also have "... = f d ((a \<leftrightarrow> d) \<bullet> T) c" unfolding flip_def apply(subst perm1) using fresh fr apply(simp add: supp_swap fresh_star_def fresh_Pair) apply(simp) done also have "... = f d ((b \<leftrightarrow> d) \<bullet> S) c" using eq by simp also have "... = (b \<leftrightarrow> d) \<bullet> f b S c" unfolding flip_def apply(subst perm2) using fresh fr apply(simp add: supp_swap fresh_star_def fresh_Pair) apply(simp) done also have "... = f b S c" apply(rule flip_fresh_fresh) using fcb[where a="b"] apply(simp) using fr apply(simp add: fresh_Pair) done finally show ?thesis by simpqedlocale test = fixes f1::"name \<Rightarrow> name list \<Rightarrow> ('a::pt)" and f2::"lam \<Rightarrow> lam \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> name list \<Rightarrow> ('a::pt)" and f3::"name \<Rightarrow> lam \<Rightarrow> 'a \<Rightarrow> name list \<Rightarrow> ('a::pt)" assumes fs: "finite (supp (f1, f2, f3))" and eq: "eqvt f1" "eqvt f2" "eqvt f3" and fcb1: "\<And>l n. atom ` set l \<sharp>* f1 n l" and fcb2: "\<And>l t1 t2 r1 r2. atom ` set l \<sharp>* (r1, r2) \<Longrightarrow> atom ` set l \<sharp>* f2 t1 t2 r1 r2 l" and fcb3: "\<And>t l r. atom ` set (x # l) \<sharp>* r \<Longrightarrow> atom ` set (x # l) \<sharp>* f3 x t r l"beginnominal_primrec (invariant "\<lambda>(x, l) y. atom ` set l \<sharp>* y") fwhere "f (Var x) l = f1 x l"| "f (App t1 t2) l = f2 t1 t2 (f t1 l) (f t2 l) l"| "atom x \<sharp> l \<Longrightarrow> (f (Lam [x].t) l) = f3 x t (f t (x # l)) l" apply (simp add: eqvt_def f_graph_def) apply (rule, perm_simp) apply (simp only: eq[unfolded eqvt_def]) apply (erule f_graph.induct) apply (simp add: fcb1) apply (simp add: fcb2 fresh_star_Pair) apply simp apply (subgoal_tac "atom ` set (xa # l) \<sharp>* f3 xa t (f_sum (t, xa # l)) l") apply (simp add: fresh_star_def) apply (rule fcb3) apply (simp add: fresh_star_def fresh_def) apply simp_all apply(case_tac x) apply(rule_tac y="a" and c="b" in lam.strong_exhaust) apply(auto simp add: fresh_star_def) apply(erule_tac Abs_lst1_fcb2)--"?" apply (subgoal_tac "atom ` set (a # la) \<sharp>* f3 a T (f_sumC (T, a # la)) la") apply (simp add: fresh_star_def) apply (rule fcb3) apply (simp add: fresh_star_def) apply (rule fresh_fun_eqvt_app4[OF eq(3)]) apply (simp add: fresh_at_base) apply assumption apply (erule fresh_eqvt_at) apply (simp add: finite_supp) apply (simp add: fresh_Pair fresh_Cons fresh_at_base) apply assumption apply (subgoal_tac "\<And>p y r l. p \<bullet> (f3 x y r l) = f3 (p \<bullet> x) (p \<bullet> y) (p \<bullet> r) (p \<bullet> l)") apply (subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> la = la") apply (simp add: eqvt_at_def) apply (simp add: swap_fresh_fresh) apply (simp add: permute_fun_app_eq eq[unfolded eqvt_def]) apply simp donetermination by (relation "measure (\<lambda>(x,_). size x)") (auto simp add: lam.size)endsection {* Locally Nameless Terms *}nominal_datatype ln = LNBnd nat| LNVar name| LNApp ln ln| LNLam lnfun lookup :: "name list \<Rightarrow> nat \<Rightarrow> name \<Rightarrow> ln" where "lookup [] n x = LNVar x"| "lookup (y # ys) n x = (if x = y then LNBnd n else (lookup ys (n + 1) x))"lemma lookup_eqvt[eqvt]: shows "(p \<bullet> lookup xs n x) = lookup (p \<bullet> xs) (p \<bullet> n) (p \<bullet> x)" by (induct xs arbitrary: n) (simp_all add: permute_pure)lemma fresh_at_list: "atom x \<sharp> xs \<longleftrightarrow> x \<notin> set xs" unfolding fresh_def supp_set[symmetric] apply (induct xs) apply (simp add: supp_set_empty) apply simp apply auto apply (simp_all add: insert_absorb UnI2 finite_set supp_of_finite_insert supp_at_base) doneinterpretation trans: test "%x l. lookup l 0 x" "%t1 t2 r1 r2 l. LNApp r1 r2" "%n t r l. LNLam r" apply default apply (auto simp add: pure_fresh supp_Pair) apply (simp_all add: fresh_def supp_def permute_fun_def permute_pure lookup_eqvt)[3] apply (simp_all add: eqvt_def permute_fun_def permute_pure lookup_eqvt) apply (simp add: fresh_star_def) apply (rule_tac x="0 :: nat" in spec) apply (induct_tac l) apply (simp add: ln.fresh pure_fresh) apply (auto simp add: ln.fresh pure_fresh)[1] apply (case_tac "a \<in> set list") apply simp apply (rule_tac f="lookup" in fresh_fun_eqvt_app3) unfolding eqvt_def apply rule using eqvts_raw(35) apply auto[1] apply (simp add: fresh_at_list) apply (simp add: pure_fresh) apply (simp add: fresh_at_base) apply (simp add: fresh_star_Pair fresh_star_def ln.fresh) apply (simp add: fresh_star_def ln.fresh) donethm trans.f.simpslemma lam_strong_exhaust2: "\<lbrakk>\<And>name. y = Var name \<Longrightarrow> P; \<And>lam1 lam2. y = App lam1 lam2 \<Longrightarrow> P; \<And>name lam. \<lbrakk>{atom name} \<sharp>* c; y = Lam [name]. lam\<rbrakk> \<Longrightarrow> P; finite (supp c)\<rbrakk> \<Longrightarrow> P"sorrynominal_primrec gwhere "(~finite (supp (g1, g2, g3))) \<Longrightarrow> g g1 g2 g3 t = t"| "finite (supp (g1, g2, g3)) \<Longrightarrow> g g1 g2 g3 (Var x) = g1 x"| "finite (supp (g1, g2, g3)) \<Longrightarrow> g g1 g2 g3 (App t1 t2) = g2 t1 t2 (g g1 g2 g3 t1) (g g1 g2 g3 t2)"| "finite (supp (g1, g2, g3)) \<Longrightarrow> atom x \<sharp> (g1,g2,g3) \<Longrightarrow> (g g1 g2 g3 (Lam [x].t)) = g3 x t (g g1 g2 g3 t)" apply (simp add: eqvt_def g_graph_def) apply (rule, perm_simp, rule) apply simp_all apply (case_tac x) apply (case_tac "finite (supp (a, b, c))") prefer 2 apply simp apply(rule_tac y="d" and c="(a,b,c)" in lam_strong_exhaust2) apply auto apply blast apply (simp add: Abs1_eq_iff fresh_star_def) sorrytermination by (relation "measure (\<lambda>(_,_,_,t). size t)") (simp_all add: lam.size)end