Nominal/nominal_function_core.ML
author Christian Urban <urbanc@in.tum.de>
Tue, 14 Jun 2011 14:07:07 +0100
changeset 2848 da7e6655cd4c
parent 2822 23befefc6e73
child 2862 47063163f333
permissions -rw-r--r--
fixed the problem when giving a complex default-term; the fundef lemmas in Nominal_Base were not general enough

(*  Nominal Function Core
    Author:  Christian Urban

    heavily based on the code of Alexander Krauss
    (code forked on 14 January 2011)

Core of the nominal function package.
*)


signature NOMINAL_FUNCTION_CORE =
sig
  val trace: bool Unsynchronized.ref

  val prepare_nominal_function : Nominal_Function_Common.nominal_function_config
    -> string (* defname *)
    -> ((bstring * typ) * mixfix) list (* defined symbol *)
    -> ((bstring * typ) list * term list * term * term) list (* specification *)
    -> local_theory
    -> (term   (* f *)
        * thm  (* goalstate *)
        * (thm -> Function_Common.function_result) (* continuation *)
       ) * local_theory

end

structure Nominal_Function_Core : NOMINAL_FUNCTION_CORE =
struct

val trace = Unsynchronized.ref false
fun trace_msg msg = if ! trace then tracing (msg ()) else ()

val boolT = HOLogic.boolT
val mk_eq = HOLogic.mk_eq

open Function_Lib
open Function_Common
open Nominal_Function_Common

datatype globals = Globals of
 {fvar: term,
  domT: typ,
  ranT: typ,
  h: term,
  y: term,
  x: term,
  z: term,
  a: term,
  P: term,
  D: term,
  Pbool:term}

datatype rec_call_info = RCInfo of
 {RIvs: (string * typ) list,  (* Call context: fixes and assumes *)
  CCas: thm list,
  rcarg: term,                 (* The recursive argument *)
  llRI: thm,
  h_assum: term}


datatype clause_context = ClauseContext of
 {ctxt : Proof.context,
  qs : term list,
  gs : term list,
  lhs: term,
  rhs: term,
  cqs: cterm list,
  ags: thm list,
  case_hyp : thm}


fun transfer_clause_ctx thy (ClauseContext { ctxt, qs, gs, lhs, rhs, cqs, ags, case_hyp }) =
  ClauseContext { ctxt = ProofContext.transfer thy ctxt,
    qs = qs, gs = gs, lhs = lhs, rhs = rhs, cqs = cqs, ags = ags, case_hyp = case_hyp }


datatype clause_info = ClauseInfo of
 {no: int,
  qglr : ((string * typ) list * term list * term * term),
  cdata : clause_context,
  tree: Function_Ctx_Tree.ctx_tree,
  lGI: thm,
  RCs: rec_call_info list}


(* Theory dependencies. *)
val acc_induct_rule = @{thm accp_induct_rule}

val ex1_implies_ex = @{thm FunDef.fundef_ex1_existence}
val ex1_implies_un = @{thm FunDef.fundef_ex1_uniqueness}
val ex1_implies_iff = @{thm FunDef.fundef_ex1_iff}

val acc_downward = @{thm accp_downward}
val accI = @{thm accp.accI}
val case_split = @{thm HOL.case_split}
val fundef_default_value = @{thm FunDef.fundef_default_value}
val not_acc_down = @{thm not_accp_down}



fun find_calls tree =
  let
    fun add_Ri (fixes,assumes) (_ $ arg) _ (_, xs) =
      ([], (fixes, assumes, arg) :: xs)
      | add_Ri _ _ _ _ = raise Match
  in
    rev (Function_Ctx_Tree.traverse_tree add_Ri tree [])
  end

(* nominal *)
fun mk_eqvt_at (f_trm, arg_trm) =
  let
    val f_ty = fastype_of f_trm
    val arg_ty = domain_type f_ty
  in
    Const (@{const_name eqvt_at}, [f_ty, arg_ty] ---> @{typ bool}) $ f_trm $ arg_trm
    |> HOLogic.mk_Trueprop
  end

fun mk_eqvt trm =
  let
    val ty = fastype_of trm
  in
    Const (@{const_name eqvt}, ty --> @{typ bool}) $ trm
    |> HOLogic.mk_Trueprop
  end

fun mk_inv inv (f_trm, arg_trm) = 
  betapplys (inv, [arg_trm, (f_trm $ arg_trm)])
  |> HOLogic.mk_Trueprop

fun mk_invariant (Globals {x, y, ...}) G invariant = 
  let
    val prem = HOLogic.mk_Trueprop (G $ x $ y)
    val concl = HOLogic.mk_Trueprop (betapplys (invariant, [x, y]))
  in
    Logic.mk_implies (prem, concl)
    |> mk_forall_rename ("y", y)
    |> mk_forall_rename ("x", x)
  end  

(** building proof obligations *)
fun mk_eqvt_proof_obligation qs fvar (vs, assms, arg) = 
  mk_eqvt_at (fvar, arg)
  |> curry Logic.list_implies (map prop_of assms)
  |> curry Term.list_all_free vs
  |> curry Term.list_abs_free qs
  |> strip_abs_body

fun mk_inv_proof_obligation inv qs fvar (vs, assms, arg) = 
  mk_inv inv (fvar, arg)
  |> curry Logic.list_implies (map prop_of assms)
  |> curry Term.list_all_free vs
  |> curry Term.list_abs_free qs
  |> strip_abs_body

(** building proof obligations *)
fun mk_compat_proof_obligations domT ranT fvar f RCss inv glrs =
  let
    fun mk_impl (((qs, gs, lhs, rhs), RCs), ((qs', gs', lhs', rhs'), _)) =
      let
        val shift = incr_boundvars (length qs')
        val eqvts_proof_obligations = map (shift o mk_eqvt_proof_obligation qs fvar) RCs
        val invs_proof_obligations = map (shift o mk_inv_proof_obligation inv qs fvar) RCs
      in
        Logic.mk_implies
          (HOLogic.mk_Trueprop (HOLogic.eq_const domT $ shift lhs $ lhs'),
            HOLogic.mk_Trueprop (HOLogic.eq_const ranT $ shift rhs $ rhs'))
        |> fold_rev (curry Logic.mk_implies) (map shift gs @ gs')
        |> fold_rev (curry Logic.mk_implies) invs_proof_obligations (* nominal *)
        |> fold_rev (curry Logic.mk_implies) eqvts_proof_obligations (* nominal *)
        |> fold_rev (fn (n,T) => fn b => Term.all T $ Abs(n,T,b)) (qs @ qs')
        |> curry abstract_over fvar
        |> curry subst_bound f
      end
  in
    map mk_impl (unordered_pairs (glrs ~~ RCss))
  end

fun mk_completeness (Globals {x, Pbool, ...}) clauses qglrs =
  let
    fun mk_case (ClauseContext {qs, gs, lhs, ...}, (oqs, _, _, _)) =
      HOLogic.mk_Trueprop Pbool
      |> curry Logic.mk_implies (HOLogic.mk_Trueprop (mk_eq (x, lhs)))
      |> fold_rev (curry Logic.mk_implies) gs
      |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
  in
    HOLogic.mk_Trueprop Pbool
    |> fold_rev (curry Logic.mk_implies o mk_case) (clauses ~~ qglrs)
    |> mk_forall_rename ("x", x)
    |> mk_forall_rename ("P", Pbool)
  end

(** making a context with it's own local bindings **)

fun mk_clause_context x ctxt (pre_qs,pre_gs,pre_lhs,pre_rhs) =
  let
    val (qs, ctxt') = Variable.variant_fixes (map fst pre_qs) ctxt
      |>> map2 (fn (_, T) => fn n => Free (n, T)) pre_qs

    val thy = ProofContext.theory_of ctxt'

    fun inst t = subst_bounds (rev qs, t)
    val gs = map inst pre_gs
    val lhs = inst pre_lhs
    val rhs = inst pre_rhs

    val cqs = map (cterm_of thy) qs
    val ags = map (Thm.assume o cterm_of thy) gs

    val case_hyp = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (x, lhs))))
  in
    ClauseContext { ctxt = ctxt', qs = qs, gs = gs, lhs = lhs, rhs = rhs,
      cqs = cqs, ags = ags, case_hyp = case_hyp }
  end


(* lowlevel term function. FIXME: remove *)
fun abstract_over_list vs body =
  let
    fun abs lev v tm =
      if v aconv tm then Bound lev
      else
        (case tm of
          Abs (a, T, t) => Abs (a, T, abs (lev + 1) v t)
        | t $ u => abs lev v t $ abs lev v u
        | t => t)
  in
    fold_index (fn (i, v) => fn t => abs i v t) vs body
  end



fun mk_clause_info globals G f no cdata qglr tree RCs GIntro_thm RIntro_thms =
  let
    val Globals {h, ...} = globals

    val ClauseContext { ctxt, qs, cqs, ags, ... } = cdata
    val cert = Thm.cterm_of (ProofContext.theory_of ctxt)

    (* Instantiate the GIntro thm with "f" and import into the clause context. *)
    val lGI = GIntro_thm
      |> Thm.forall_elim (cert f)
      |> fold Thm.forall_elim cqs
      |> fold Thm.elim_implies ags

    fun mk_call_info (rcfix, rcassm, rcarg) RI =
      let
        val llRI = RI
          |> fold Thm.forall_elim cqs
          |> fold (Thm.forall_elim o cert o Free) rcfix
          |> fold Thm.elim_implies ags
          |> fold Thm.elim_implies rcassm

        val h_assum =
          HOLogic.mk_Trueprop (G $ rcarg $ (h $ rcarg))
          |> fold_rev (curry Logic.mk_implies o prop_of) rcassm
          |> fold_rev (Logic.all o Free) rcfix
          |> Pattern.rewrite_term (ProofContext.theory_of ctxt) [(f, h)] []
          |> abstract_over_list (rev qs)
      in
        RCInfo {RIvs=rcfix, rcarg=rcarg, CCas=rcassm, llRI=llRI, h_assum=h_assum}
      end

    val RC_infos = map2 mk_call_info RCs RIntro_thms
  in
    ClauseInfo {no=no, cdata=cdata, qglr=qglr, lGI=lGI, RCs=RC_infos,
      tree=tree}
  end


fun store_compat_thms 0 thms = []
  | store_compat_thms n thms =
  let
    val (thms1, thms2) = chop n thms
  in
    (thms1 :: store_compat_thms (n - 1) thms2)
  end

(* expects i <= j *)
fun lookup_compat_thm i j cts =
  nth (nth cts (i - 1)) (j - i)

(* nominal *)
(* Returns "Gsi, Gsj, lhs_i = lhs_j |-- rhs_j_f = rhs_i_f" *)
(* if j < i, then turn around *)
fun get_compat_thm thy cts eqvtsi eqvtsj invsi invsj i j ctxi ctxj =
  let
    val ClauseContext {cqs=cqsi,ags=agsi,lhs=lhsi,case_hyp=case_hypi,...} = ctxi
    val ClauseContext {cqs=cqsj,ags=agsj,lhs=lhsj,case_hyp=case_hypj,...} = ctxj

    val lhsi_eq_lhsj = cterm_of thy (HOLogic.mk_Trueprop (mk_eq (lhsi, lhsj)))

  in if j < i then
    let
      val compat = lookup_compat_thm j i cts
    in
      compat         (* "!!qj qi. Gsj => Gsi => lhsj = lhsi ==> rhsj = rhsi" *)
      |> fold Thm.forall_elim (cqsj @ cqsi) (* "Gsj => Gsi => lhsj = lhsi ==> rhsj = rhsi" *)
      |> fold Thm.elim_implies eqvtsj (* nominal *)
      |> fold Thm.elim_implies invsj (* nominal *)
      |> fold Thm.elim_implies agsj
      |> fold Thm.elim_implies agsi
      |> Thm.elim_implies ((Thm.assume lhsi_eq_lhsj) RS sym) (* "Gsj, Gsi, lhsi = lhsj |-- rhsj = rhsi" *)
    end
    else
    let
      val compat = lookup_compat_thm i j cts
    in
      compat        (* "!!qi qj. Gsi => Gsj => lhsi = lhsj ==> rhsi = rhsj" *)
      |> fold Thm.forall_elim (cqsi @ cqsj) (* "Gsi => Gsj => lhsi = lhsj ==> rhsi = rhsj" *)
      |> fold Thm.elim_implies eqvtsi  (* nominal *)
      |> fold Thm.elim_implies invsi  (* nominal *)
      |> fold Thm.elim_implies agsi
      |> fold Thm.elim_implies agsj
      |> Thm.elim_implies (Thm.assume lhsi_eq_lhsj)
      |> (fn thm => thm RS sym) (* "Gsi, Gsj, lhsi = lhsj |-- rhsj = rhsi" *)
    end
  end


(* Generates the replacement lemma in fully quantified form. *)
fun mk_replacement_lemma thy h ih_elim clause =
  let
    val ClauseInfo {cdata=ClauseContext {qs, lhs, cqs, ags, case_hyp, ...},
      RCs, tree, ...} = clause
    local open Conv in
      val ih_conv = arg1_conv o arg_conv o arg_conv
    end

    val ih_elim_case =
      Conv.fconv_rule (ih_conv (K (case_hyp RS eq_reflection))) ih_elim

    val Ris = map (fn RCInfo {llRI, ...} => llRI) RCs
    val h_assums = map (fn RCInfo {h_assum, ...} =>
      Thm.assume (cterm_of thy (subst_bounds (rev qs, h_assum)))) RCs

    val (eql, _) =
      Function_Ctx_Tree.rewrite_by_tree thy h ih_elim_case (Ris ~~ h_assums) tree

    val replace_lemma = (eql RS meta_eq_to_obj_eq)
      |> Thm.implies_intr (cprop_of case_hyp)
      |> fold_rev (Thm.implies_intr o cprop_of) h_assums
      |> fold_rev (Thm.implies_intr o cprop_of) ags
      |> fold_rev Thm.forall_intr cqs
      |> Thm.close_derivation
  in
    replace_lemma
  end

(* nominal *)
(* Generates the eqvt lemmas for each clause *) 
fun mk_eqvt_lemma thy ih_eqvt clause =
  let
    val ClauseInfo {cdata=ClauseContext {cqs, ags, case_hyp, ...}, RCs, ...} = clause
     
    local open Conv in
      val ih_conv = arg1_conv o arg_conv o arg_conv
    end

    val ih_eqvt_case =
      Conv.fconv_rule (ih_conv (K (case_hyp RS eq_reflection))) ih_eqvt

    fun prep_eqvt (RCInfo {llRI, RIvs, CCas, ...}) = 
        (llRI RS ih_eqvt_case)
        |> fold_rev (Thm.implies_intr o cprop_of) CCas
        |> fold_rev (Thm.forall_intr o cterm_of thy o Free) RIvs 
  in
    map prep_eqvt RCs
    |> map (fold_rev (Thm.implies_intr o cprop_of) ags)
    |> map (Thm.implies_intr (cprop_of case_hyp))
    |> map (fold_rev Thm.forall_intr cqs)
    |> map (Thm.close_derivation) 
  end

(* nominal *)
fun mk_invariant_lemma thy ih_inv clause =
  let
    val ClauseInfo {cdata=ClauseContext {cqs, ags, case_hyp, ...}, RCs, ...} = clause
     
    local open Conv in
      val ih_conv = arg1_conv o arg_conv o arg_conv
    end

    val ih_inv_case =
      Conv.fconv_rule (ih_conv (K (case_hyp RS eq_reflection))) ih_inv

    fun prep_inv (RCInfo {llRI, RIvs, CCas, ...}) = 
        (llRI RS ih_inv_case)
        |> fold_rev (Thm.implies_intr o cprop_of) CCas
        |> fold_rev (Thm.forall_intr o cterm_of thy o Free) RIvs 
  in
    map prep_inv RCs
    |> map (fold_rev (Thm.implies_intr o cprop_of) ags)
    |> map (Thm.implies_intr (cprop_of case_hyp))
    |> map (fold_rev Thm.forall_intr cqs)
    |> map (Thm.close_derivation) 
  end

(* nominal *)
fun mk_uniqueness_clause thy globals compat_store eqvts invs clausei clausej RLj =
  let
    val Globals {h, y, x, fvar, ...} = globals
    val ClauseInfo {no=i, cdata=cctxi as ClauseContext {ctxt=ctxti, lhs=lhsi, case_hyp, cqs = cqsi, 
      ags = agsi, ...}, ...} = clausei
    val ClauseInfo {no=j, qglr=cdescj, RCs=RCsj, ...} = clausej

    val cctxj as ClauseContext {ags = agsj', lhs = lhsj', rhs = rhsj', qs = qsj', cqs = cqsj', ...} =
      mk_clause_context x ctxti cdescj 

    val rhsj'h = Pattern.rewrite_term thy [(fvar,h)] [] rhsj'

    val Ghsj' = map 
      (fn RCInfo {h_assum, ...} => Thm.assume (cterm_of thy (subst_bounds (rev qsj', h_assum)))) RCsj

    val y_eq_rhsj'h = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (y, rhsj'h))))
    val lhsi_eq_lhsj' = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (lhsi, lhsj'))))
       (* lhs_i = lhs_j' |-- lhs_i = lhs_j' *) 

    val case_hypj' = trans OF [case_hyp, lhsi_eq_lhsj']

    val RLj_import = RLj
      |> fold Thm.forall_elim cqsj'
      |> fold Thm.elim_implies agsj'
      |> fold Thm.elim_implies Ghsj'

    val eqvtsi = nth eqvts (i - 1)
      |> map (fold Thm.forall_elim cqsi)
      |> map (fold Thm.elim_implies [case_hyp])
      |> map (fold Thm.elim_implies agsi)

    val eqvtsj = nth eqvts (j - 1)
      |> map (fold Thm.forall_elim cqsj')
      |> map (fold Thm.elim_implies [case_hypj'])
      |> map (fold Thm.elim_implies agsj')

    val invsi = nth invs (i - 1)
      |> map (fold Thm.forall_elim cqsi)
      |> map (fold Thm.elim_implies [case_hyp])
      |> map (fold Thm.elim_implies agsi)

    val invsj = nth invs (j - 1)
      |> map (fold Thm.forall_elim cqsj')
      |> map (fold Thm.elim_implies [case_hypj'])
      |> map (fold Thm.elim_implies agsj')

    val compat = get_compat_thm thy compat_store eqvtsi eqvtsj invsi invsj i j cctxi cctxj

  in
    (trans OF [case_hyp, lhsi_eq_lhsj']) (* lhs_i = lhs_j' |-- x = lhs_j' *)
    |> Thm.implies_elim RLj_import
      (* Rj1' ... Rjk', lhs_i = lhs_j' |-- rhs_j'_h = rhs_j'_f *)
    |> (fn it => trans OF [it, compat])
      (* lhs_i = lhs_j', Gj', Rj1' ... Rjk' |-- rhs_j'_h = rhs_i_f *)
    |> (fn it => trans OF [y_eq_rhsj'h, it])
      (* lhs_i = lhs_j', Gj', Rj1' ... Rjk', y = rhs_j_h' |-- y = rhs_i_f *)
    |> fold_rev (Thm.implies_intr o cprop_of) Ghsj'
    |> fold_rev (Thm.implies_intr o cprop_of) agsj'
      (* lhs_i = lhs_j' , y = rhs_j_h' |-- Gj', Rj1'...Rjk' ==> y = rhs_i_f *)
    |> Thm.implies_intr (cprop_of y_eq_rhsj'h)
    |> Thm.implies_intr (cprop_of lhsi_eq_lhsj')
    |> fold_rev Thm.forall_intr (cterm_of thy h :: cqsj')
  end

(* nominal *)
fun mk_uniqueness_case thy globals G f ihyp ih_intro G_cases compat_store clauses replems eqvtlems invlems 
  clausei =
  let
    val Globals {x, y, ranT, fvar, ...} = globals
    val ClauseInfo {cdata = ClauseContext {lhs, rhs, cqs, ags, case_hyp, ...}, lGI, RCs, ...} = clausei
    val rhsC = Pattern.rewrite_term thy [(fvar, f)] [] rhs

    val ih_intro_case = full_simplify (HOL_basic_ss addsimps [case_hyp]) ih_intro

    fun prep_RC (RCInfo {llRI, RIvs, CCas, ...}) = 
        (llRI RS ih_intro_case)
        |> fold_rev (Thm.implies_intr o cprop_of) CCas
        |> fold_rev (Thm.forall_intr o cterm_of thy o Free) RIvs
 
    val existence = fold (curry op COMP o prep_RC) RCs lGI

    val P = cterm_of thy (mk_eq (y, rhsC))
    val G_lhs_y = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (G $ lhs $ y)))

    val unique_clauses =
      map2 (mk_uniqueness_clause thy globals compat_store eqvtlems invlems clausei) clauses replems

    fun elim_implies_eta A AB =
      Thm.compose_no_flatten true (A, 0) 1 AB |> Seq.list_of |> the_single
 
    val uniqueness = G_cases
      |> Thm.forall_elim (cterm_of thy lhs)
      |> Thm.forall_elim (cterm_of thy y)
      |> Thm.forall_elim P
      |> Thm.elim_implies G_lhs_y
      |> fold elim_implies_eta unique_clauses
      |> Thm.implies_intr (cprop_of G_lhs_y)
      |> Thm.forall_intr (cterm_of thy y)

    val P2 = cterm_of thy (lambda y (G $ lhs $ y)) (* P2 y := (lhs, y): G *)

    val exactly_one =
      ex1I |> instantiate' [SOME (ctyp_of thy ranT)] [SOME P2, SOME (cterm_of thy rhsC)]
      |> curry (op COMP) existence
      |> curry (op COMP) uniqueness
      |> simplify (HOL_basic_ss addsimps [case_hyp RS sym])
      |> Thm.implies_intr (cprop_of case_hyp)
      |> fold_rev (Thm.implies_intr o cprop_of) ags
      |> fold_rev Thm.forall_intr cqs

    val function_value =
      existence
      |> Thm.implies_intr ihyp
      |> Thm.implies_intr (cprop_of case_hyp)
      |> Thm.forall_intr (cterm_of thy x)
      |> Thm.forall_elim (cterm_of thy lhs)
      |> curry (op RS) refl
  in
    (exactly_one, function_value)
  end


(* nominal *)
fun prove_stuff ctxt globals G f R clauses complete compat compat_store G_elim G_eqvt invariant f_def =
  let
    val Globals {h, domT, ranT, x, ...} = globals
    val thy = ProofContext.theory_of ctxt

    (* Inductive Hypothesis: !!z. (z,x):R ==> EX!y. (z,y):G *)
    val ihyp = Term.all domT $ Abs ("z", domT,
      Logic.mk_implies (HOLogic.mk_Trueprop (R $ Bound 0 $ x),
        HOLogic.mk_Trueprop (Const (@{const_name Ex1}, (ranT --> boolT) --> boolT) $
          Abs ("y", ranT, G $ Bound 1 $ Bound 0))))
      |> cterm_of thy

    val ihyp_thm = Thm.assume ihyp |> Thm.forall_elim_vars 0
    val ih_intro = ihyp_thm RS (f_def RS ex1_implies_ex)
    val ih_elim = ihyp_thm RS (f_def RS ex1_implies_un)
      |> instantiate' [] [NONE, SOME (cterm_of thy h)]
    val ih_eqvt = ihyp_thm RS (G_eqvt RS (f_def RS @{thm fundef_ex1_eqvt_at}))
    val ih_inv =  ihyp_thm RS (invariant COMP (f_def RS @{thm fundef_ex1_prop}))

    val _ = trace_msg (K "Proving Replacement lemmas...")
    val repLemmas = map (mk_replacement_lemma thy h ih_elim) clauses

    val _ = trace_msg (K "Proving Equivariance lemmas...")
    val eqvtLemmas = map (mk_eqvt_lemma thy ih_eqvt) clauses

    val _ = trace_msg (K "Proving Invariance lemmas...")
    val invLemmas = map (mk_invariant_lemma thy ih_inv) clauses

    val _ = trace_msg (K "Proving cases for unique existence...")
    val (ex1s, values) =
      split_list (map (mk_uniqueness_case thy globals G f 
        ihyp ih_intro G_elim compat_store clauses repLemmas eqvtLemmas invLemmas) clauses)
     
    val _ = trace_msg (K "Proving: Graph is a function")
    val graph_is_function = complete
      |> Thm.forall_elim_vars 0
      |> fold (curry op COMP) ex1s
      |> Thm.implies_intr (ihyp)
      |> Thm.implies_intr (cterm_of thy (HOLogic.mk_Trueprop (mk_acc domT R $ x)))
      |> Thm.forall_intr (cterm_of thy x)
      |> (fn it => Drule.compose_single (it, 2, acc_induct_rule)) (* "EX! y. (?x,y):G" *)
      |> (fn it => fold (Thm.forall_intr o cterm_of thy o Var) (Term.add_vars (prop_of it) []) it)

    val goalstate =  
         Conjunction.intr (Conjunction.intr (Conjunction.intr graph_is_function complete) invariant) G_eqvt 
      |> Thm.close_derivation
      |> Goal.protect
      |> fold_rev (Thm.implies_intr o cprop_of) compat
      |> Thm.implies_intr (cprop_of complete)
      |> Thm.implies_intr (cprop_of invariant)
      |> Thm.implies_intr (cprop_of G_eqvt)
  in
    (goalstate, values)
  end

(* wrapper -- restores quantifiers in rule specifications *)
fun inductive_def (binding as ((R, T), _)) intrs lthy =
  let
    val ({intrs = intrs_gen, elims = [elim_gen], preds = [ Rdef ], induct, raw_induct, ...}, lthy) =
      lthy
      |> Local_Theory.conceal 
      |> Inductive.add_inductive_i
          {quiet_mode = true,
            verbose = ! trace,
            alt_name = Binding.empty,
            coind = false,
            no_elim = false,
            no_ind = false,
            skip_mono = true,
            fork_mono = false}
          [binding] (* relation *)
          [] (* no parameters *)
          (map (fn t => (Attrib.empty_binding, t)) intrs) (* intro rules *)
          [] (* no special monos *)
      ||> Local_Theory.restore_naming lthy

    val cert = cterm_of (ProofContext.theory_of lthy)
    fun requantify orig_intro thm =
      let
        val (qs, t) = dest_all_all orig_intro
        val frees = Variable.add_frees lthy t [] |> remove (op =) (Binding.name_of R, T)
        val vars = Term.add_vars (prop_of thm) []
        val varmap = AList.lookup (op =) (frees ~~ map fst vars)
           #> the_default ("",0)
      in
        fold_rev (fn Free (n, T) =>
          forall_intr_rename (n, cert (Var (varmap (n, T), T)))) qs thm
      end
  in
    ((Rdef, map2 requantify intrs intrs_gen, forall_intr_vars elim_gen, induct), lthy)
  end

(* nominal *)
fun define_graph Gname fvar domT ranT clauses RCss lthy =
  let
    val GT = domT --> ranT --> boolT
    val (Gvar as (n, T)) = singleton (Variable.variant_frees lthy []) (Gname, GT)

    fun mk_GIntro (ClauseContext {qs, gs, lhs, rhs, ...}) RCs =
      let
        fun mk_h_assm (rcfix, rcassm, rcarg) =
          HOLogic.mk_Trueprop (Free Gvar $ rcarg $ (fvar $ rcarg))
          |> fold_rev (curry Logic.mk_implies o prop_of) rcassm
          |> fold_rev (Logic.all o Free) rcfix
      in
        HOLogic.mk_Trueprop (Free Gvar $ lhs $ rhs)
        |> fold_rev (curry Logic.mk_implies o mk_h_assm) RCs
        |> fold_rev (curry Logic.mk_implies) gs
        |> fold_rev Logic.all (fvar :: qs)
      end

    val G_intros = map2 mk_GIntro clauses RCss
  in
    inductive_def ((Binding.name n, T), NoSyn) G_intros lthy
  end

fun define_function fdefname (fname, mixfix) domT ranT G default lthy =
  let
    val f_def =
      Abs ("x", domT, Const (@{const_name FunDef.THE_default}, ranT --> (ranT --> boolT) --> ranT) 
        $ (default $ Bound 0) $ Abs ("y", ranT, G $ Bound 1 $ Bound 0))
      |> Syntax.check_term lthy
  in
    Local_Theory.define
      ((Binding.name (function_name fname), mixfix),
        ((Binding.conceal (Binding.name fdefname), []), f_def)) lthy
  end

(* nominal *)
fun define_recursion_relation Rname domT qglrs clauses RCss lthy =
  let
    val RT = domT --> domT --> boolT
    val (Rvar as (n, T)) = singleton (Variable.variant_frees lthy []) (Rname, RT)

    fun mk_RIntro (ClauseContext {qs, gs, lhs, ...}, (oqs, _, _, _)) (rcfix, rcassm, rcarg) =
      HOLogic.mk_Trueprop (Free Rvar $ rcarg $ lhs)
      |> fold_rev (curry Logic.mk_implies o prop_of) rcassm
      |> fold_rev (curry Logic.mk_implies) gs
      |> fold_rev (Logic.all o Free) rcfix
      |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
      (* "!!qs xs. CS ==> G => (r, lhs) : R" *)

    val R_intross = map2 (map o mk_RIntro) (clauses ~~ qglrs) RCss

    val ((R, RIntro_thms, R_elim, _), lthy) =
      inductive_def ((Binding.name n, T), NoSyn) (flat R_intross) lthy
  in
    ((R, Library.unflat R_intross RIntro_thms, R_elim), lthy)
  end


fun fix_globals domT ranT fvar ctxt =
  let
    val ([h, y, x, z, a, D, P, Pbool],ctxt') = Variable.variant_fixes
      ["h_fd", "y_fd", "x_fd", "z_fd", "a_fd", "D_fd", "P_fd", "Pb_fd"] ctxt
  in
    (Globals {h = Free (h, domT --> ranT),
      y = Free (y, ranT),
      x = Free (x, domT),
      z = Free (z, domT),
      a = Free (a, domT),
      D = Free (D, domT --> boolT),
      P = Free (P, domT --> boolT),
      Pbool = Free (Pbool, boolT),
      fvar = fvar,
      domT = domT,
      ranT = ranT},
    ctxt')
  end

fun inst_RC thy fvar f (rcfix, rcassm, rcarg) =
  let
    fun inst_term t = subst_bound(f, abstract_over (fvar, t))
  in
    (rcfix, map (Thm.assume o cterm_of thy o inst_term o prop_of) rcassm, inst_term rcarg)
  end



(**********************************************************
 *                   PROVING THE RULES
 **********************************************************)

fun mk_psimps thy globals R clauses valthms f_iff graph_is_function =
  let
    val Globals {domT, z, ...} = globals

    fun mk_psimp (ClauseInfo {qglr = (oqs, _, _, _), cdata = ClauseContext {cqs, lhs, ags, ...}, ...}) valthm =
      let
        val lhs_acc = cterm_of thy (HOLogic.mk_Trueprop (mk_acc domT R $ lhs)) (* "acc R lhs" *)
        val z_smaller = cterm_of thy (HOLogic.mk_Trueprop (R $ z $ lhs)) (* "R z lhs" *)
      in
        ((Thm.assume z_smaller) RS ((Thm.assume lhs_acc) RS acc_downward))
        |> (fn it => it COMP graph_is_function)
        |> Thm.implies_intr z_smaller
        |> Thm.forall_intr (cterm_of thy z)
        |> (fn it => it COMP valthm)
        |> Thm.implies_intr lhs_acc
        |> asm_simplify (HOL_basic_ss addsimps [f_iff])
        |> fold_rev (Thm.implies_intr o cprop_of) ags
        |> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
      end
  in
    map2 mk_psimp clauses valthms
  end


(** Induction rule **)


val acc_subset_induct = @{thm predicate1I} RS @{thm accp_subset_induct}


fun mk_partial_induct_rule thy globals R complete_thm clauses =
  let
    val Globals {domT, x, z, a, P, D, ...} = globals
    val acc_R = mk_acc domT R

    val x_D = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (D $ x)))
    val a_D = cterm_of thy (HOLogic.mk_Trueprop (D $ a))

    val D_subset = cterm_of thy (Logic.all x
      (Logic.mk_implies (HOLogic.mk_Trueprop (D $ x), HOLogic.mk_Trueprop (acc_R $ x))))

    val D_dcl = (* "!!x z. [| x: D; (z,x):R |] ==> z:D" *)
      Logic.all x (Logic.all z (Logic.mk_implies (HOLogic.mk_Trueprop (D $ x),
        Logic.mk_implies (HOLogic.mk_Trueprop (R $ z $ x),
          HOLogic.mk_Trueprop (D $ z)))))
      |> cterm_of thy

    (* Inductive Hypothesis: !!z. (z,x):R ==> P z *)
    val ihyp = Term.all domT $ Abs ("z", domT,
      Logic.mk_implies (HOLogic.mk_Trueprop (R $ Bound 0 $ x),
        HOLogic.mk_Trueprop (P $ Bound 0)))
      |> cterm_of thy

    val aihyp = Thm.assume ihyp

    fun prove_case clause =
      let
        val ClauseInfo {cdata = ClauseContext {ctxt, qs, cqs, ags, gs, lhs, case_hyp, ...},
          RCs, qglr = (oqs, _, _, _), ...} = clause

        val case_hyp_conv = K (case_hyp RS eq_reflection)
        local open Conv in
          val lhs_D = fconv_rule (arg_conv (arg_conv (case_hyp_conv))) x_D
          val sih =
            fconv_rule (Conv.binder_conv
              (K (arg1_conv (arg_conv (arg_conv case_hyp_conv)))) ctxt) aihyp
        end

        fun mk_Prec (RCInfo {llRI, RIvs, CCas, rcarg, ...}) = sih
          |> Thm.forall_elim (cterm_of thy rcarg)
          |> Thm.elim_implies llRI
          |> fold_rev (Thm.implies_intr o cprop_of) CCas
          |> fold_rev (Thm.forall_intr o cterm_of thy o Free) RIvs

        val P_recs = map mk_Prec RCs   (*  [P rec1, P rec2, ... ]  *)

        val step = HOLogic.mk_Trueprop (P $ lhs)
          |> fold_rev (curry Logic.mk_implies o prop_of) P_recs
          |> fold_rev (curry Logic.mk_implies) gs
          |> curry Logic.mk_implies (HOLogic.mk_Trueprop (D $ lhs))
          |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
          |> cterm_of thy

        val P_lhs = Thm.assume step
          |> fold Thm.forall_elim cqs
          |> Thm.elim_implies lhs_D
          |> fold Thm.elim_implies ags
          |> fold Thm.elim_implies P_recs

        val res = cterm_of thy (HOLogic.mk_Trueprop (P $ x))
          |> Conv.arg_conv (Conv.arg_conv case_hyp_conv)
          |> Thm.symmetric (* P lhs == P x *)
          |> (fn eql => Thm.equal_elim eql P_lhs) (* "P x" *)
          |> Thm.implies_intr (cprop_of case_hyp)
          |> fold_rev (Thm.implies_intr o cprop_of) ags
          |> fold_rev Thm.forall_intr cqs
      in
        (res, step)
      end

    val (cases, steps) = split_list (map prove_case clauses)

    val istep = complete_thm
      |> Thm.forall_elim_vars 0
      |> fold (curry op COMP) cases (*  P x  *)
      |> Thm.implies_intr ihyp
      |> Thm.implies_intr (cprop_of x_D)
      |> Thm.forall_intr (cterm_of thy x)

    val subset_induct_rule =
      acc_subset_induct
      |> (curry op COMP) (Thm.assume D_subset)
      |> (curry op COMP) (Thm.assume D_dcl)
      |> (curry op COMP) (Thm.assume a_D)
      |> (curry op COMP) istep
      |> fold_rev Thm.implies_intr steps
      |> Thm.implies_intr a_D
      |> Thm.implies_intr D_dcl
      |> Thm.implies_intr D_subset

    val simple_induct_rule =
      subset_induct_rule
      |> Thm.forall_intr (cterm_of thy D)
      |> Thm.forall_elim (cterm_of thy acc_R)
      |> assume_tac 1 |> Seq.hd
      |> (curry op COMP) (acc_downward
        |> (instantiate' [SOME (ctyp_of thy domT)]
             (map (SOME o cterm_of thy) [R, x, z]))
        |> Thm.forall_intr (cterm_of thy z)
        |> Thm.forall_intr (cterm_of thy x))
      |> Thm.forall_intr (cterm_of thy a)
      |> Thm.forall_intr (cterm_of thy P)
  in
    simple_induct_rule
  end


(* FIXME: broken by design *)
fun mk_domain_intro ctxt (Globals {domT, ...}) R R_cases clause =
  let
    val thy = ProofContext.theory_of ctxt
    val ClauseInfo {cdata = ClauseContext {gs, lhs, cqs, ...},
      qglr = (oqs, _, _, _), ...} = clause
    val goal = HOLogic.mk_Trueprop (mk_acc domT R $ lhs)
      |> fold_rev (curry Logic.mk_implies) gs
      |> cterm_of thy
  in
    Goal.init goal
    |> (SINGLE (resolve_tac [accI] 1)) |> the
    |> (SINGLE (eresolve_tac [Thm.forall_elim_vars 0 R_cases] 1))  |> the
    |> (SINGLE (auto_tac ctxt)) |> the
    |> Goal.conclude
    |> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
  end



(** Termination rule **)

val wf_induct_rule = @{thm Wellfounded.wfP_induct_rule}
val wf_in_rel = @{thm FunDef.wf_in_rel}
val in_rel_def = @{thm FunDef.in_rel_def}

fun mk_nest_term_case thy globals R' ihyp clause =
  let
    val Globals {z, ...} = globals
    val ClauseInfo {cdata = ClauseContext {qs, cqs, ags, lhs, case_hyp, ...}, tree,
      qglr=(oqs, _, _, _), ...} = clause

    val ih_case = full_simplify (HOL_basic_ss addsimps [case_hyp]) ihyp

    fun step (fixes, assumes) (_ $ arg) u (sub,(hyps,thms)) =
      let
        val used = (u @ sub)
          |> map (fn (ctx,thm) => Function_Ctx_Tree.export_thm thy ctx thm)

        val hyp = HOLogic.mk_Trueprop (R' $ arg $ lhs)
          |> fold_rev (curry Logic.mk_implies o prop_of) used (* additional hyps *)
          |> Function_Ctx_Tree.export_term (fixes, assumes)
          |> fold_rev (curry Logic.mk_implies o prop_of) ags
          |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
          |> cterm_of thy

        val thm = Thm.assume hyp
          |> fold Thm.forall_elim cqs
          |> fold Thm.elim_implies ags
          |> Function_Ctx_Tree.import_thm thy (fixes, assumes)
          |> fold Thm.elim_implies used (*  "(arg, lhs) : R'"  *)

        val z_eq_arg = HOLogic.mk_Trueprop (mk_eq (z, arg))
          |> cterm_of thy |> Thm.assume

        val acc = thm COMP ih_case
        val z_acc_local = acc
          |> Conv.fconv_rule
              (Conv.arg_conv (Conv.arg_conv (K (Thm.symmetric (z_eq_arg RS eq_reflection)))))

        val ethm = z_acc_local
          |> Function_Ctx_Tree.export_thm thy (fixes,
               z_eq_arg :: case_hyp :: ags @ assumes)
          |> fold_rev forall_intr_rename (map fst oqs ~~ cqs)

        val sub' = sub @ [(([],[]), acc)]
      in
        (sub', (hyp :: hyps, ethm :: thms))
      end
      | step _ _ _ _ = raise Match
  in
    Function_Ctx_Tree.traverse_tree step tree
  end


fun mk_nest_term_rule thy globals R R_cases clauses =
  let
    val Globals { domT, x, z, ... } = globals
    val acc_R = mk_acc domT R

    val R' = Free ("R", fastype_of R)

    val Rrel = Free ("R", HOLogic.mk_setT (HOLogic.mk_prodT (domT, domT)))
    val inrel_R = Const (@{const_name FunDef.in_rel},
      HOLogic.mk_setT (HOLogic.mk_prodT (domT, domT)) --> fastype_of R) $ Rrel

    val wfR' = HOLogic.mk_Trueprop (Const (@{const_name Wellfounded.wfP},
      (domT --> domT --> boolT) --> boolT) $ R')
      |> cterm_of thy (* "wf R'" *)

    (* Inductive Hypothesis: !!z. (z,x):R' ==> z : acc R *)
    val ihyp = Term.all domT $ Abs ("z", domT,
      Logic.mk_implies (HOLogic.mk_Trueprop (R' $ Bound 0 $ x),
        HOLogic.mk_Trueprop (acc_R $ Bound 0)))
      |> cterm_of thy

    val ihyp_a = Thm.assume ihyp |> Thm.forall_elim_vars 0

    val R_z_x = cterm_of thy (HOLogic.mk_Trueprop (R $ z $ x))

    val (hyps, cases) = fold (mk_nest_term_case thy globals R' ihyp_a) clauses ([], [])
  in
    R_cases
    |> Thm.forall_elim (cterm_of thy z)
    |> Thm.forall_elim (cterm_of thy x)
    |> Thm.forall_elim (cterm_of thy (acc_R $ z))
    |> curry op COMP (Thm.assume R_z_x)
    |> fold_rev (curry op COMP) cases
    |> Thm.implies_intr R_z_x
    |> Thm.forall_intr (cterm_of thy z)
    |> (fn it => it COMP accI)
    |> Thm.implies_intr ihyp
    |> Thm.forall_intr (cterm_of thy x)
    |> (fn it => Drule.compose_single(it,2,wf_induct_rule))
    |> curry op RS (Thm.assume wfR')
    |> forall_intr_vars
    |> (fn it => it COMP allI)
    |> fold Thm.implies_intr hyps
    |> Thm.implies_intr wfR'
    |> Thm.forall_intr (cterm_of thy R')
    |> Thm.forall_elim (cterm_of thy (inrel_R))
    |> curry op RS wf_in_rel
    |> full_simplify (HOL_basic_ss addsimps [in_rel_def])
    |> Thm.forall_intr (cterm_of thy Rrel)
  end



(* nominal *)
fun prepare_nominal_function config defname [((fname, fT), mixfix)] abstract_qglrs lthy =
  let
    val NominalFunctionConfig {domintros, default=default_opt, inv=invariant_opt,...} = config

    val default_str = the_default "%x. undefined" default_opt (*FIXME dynamic scoping*)
    val invariant_str = the_default "%x y. True" invariant_opt
    val fvar = Free (fname, fT)
    val domT = domain_type fT
    val ranT = range_type fT

    val default = Syntax.parse_term lthy default_str
      |> Type.constraint fT |> Syntax.check_term lthy

    val invariant_trm = Syntax.parse_term lthy invariant_str
      |> Type.constraint ([domT, ranT] ---> @{typ bool}) |> Syntax.check_term lthy
    
    val (globals, ctxt') = fix_globals domT ranT fvar lthy

    val Globals { x, h, ... } = globals

    val clauses = map (mk_clause_context x ctxt') abstract_qglrs

    val n = length abstract_qglrs

    fun build_tree (ClauseContext { ctxt, rhs, ...}) =
       Function_Ctx_Tree.mk_tree (fname, fT) h ctxt rhs

    val trees = map build_tree clauses
    val RCss = map find_calls trees

    val ((G, GIntro_thms, G_elim, G_induct), lthy) =
      PROFILE "def_graph" (define_graph (graph_name defname) fvar domT ranT clauses RCss) lthy

    val ((f, (_, f_defthm)), lthy) =
      PROFILE "def_fun" (define_function (defname ^ "_sumC_def") (fname, mixfix) domT ranT G default) lthy

    val RCss = map (map (inst_RC (ProofContext.theory_of lthy) fvar f)) RCss
    val trees = map (Function_Ctx_Tree.inst_tree (ProofContext.theory_of lthy) fvar f) trees

    val ((R, RIntro_thmss, R_elim), lthy) =
      PROFILE "def_rel" (define_recursion_relation (rel_name defname) domT abstract_qglrs clauses RCss) lthy

    val (_, lthy) =
      Local_Theory.abbrev Syntax.mode_default ((Binding.name (dom_name defname), NoSyn), mk_acc domT R) lthy

    val newthy = ProofContext.theory_of lthy
    val clauses = map (transfer_clause_ctx newthy) clauses

    val cert = cterm_of (ProofContext.theory_of lthy)

    val xclauses = PROFILE "xclauses"
      (map7 (mk_clause_info globals G f) (1 upto n) clauses abstract_qglrs trees
        RCss GIntro_thms) RIntro_thmss

    val complete =
      mk_completeness globals clauses abstract_qglrs |> cert |> Thm.assume

    val compat =
      mk_compat_proof_obligations domT ranT fvar f RCss invariant_trm abstract_qglrs 
      |> map (cert #> Thm.assume)

    val G_eqvt = mk_eqvt G |> cert |> Thm.assume
 
    val invariant = mk_invariant globals G invariant_trm |> cert |> Thm.assume
 
    val compat_store = store_compat_thms n compat

    val (goalstate, values) = PROFILE "prove_stuff"
      (prove_stuff lthy globals G f R xclauses complete compat
         compat_store G_elim G_eqvt invariant) f_defthm
     
    fun mk_partial_rules provedgoal =
      let
        val newthy = theory_of_thm provedgoal (*FIXME*)

        val (graph_is_function, complete_thm) =
          provedgoal
          |> fst o Conjunction.elim
          |> fst o Conjunction.elim
          |> Conjunction.elim
          |> apfst (Thm.forall_elim_vars 0)

        val f_iff = graph_is_function RS (f_defthm RS ex1_implies_iff)

        val psimps = PROFILE "Proving simplification rules"
          (mk_psimps newthy globals R xclauses values f_iff) graph_is_function

        val simple_pinduct = PROFILE "Proving partial induction rule"
          (mk_partial_induct_rule newthy globals R complete_thm) xclauses

        val total_intro = PROFILE "Proving nested termination rule"
          (mk_nest_term_rule newthy globals R R_elim) xclauses

        val dom_intros =
          if domintros then SOME (PROFILE "Proving domain introduction rules"
             (map (mk_domain_intro lthy globals R R_elim)) xclauses)
           else NONE

      in
        FunctionResult {fs=[f], G=G, R=R, cases=complete_thm,
          psimps=psimps, simple_pinducts=[simple_pinduct],
          termination=total_intro, domintros=dom_intros}
      end
  in
    ((f, goalstate, mk_partial_rules), lthy)
  end


end