added a tactic "all_trivials" which simplifies all trivial constructor cases and leaves the others untouched.
theory Nominal2_FCB
imports "Nominal2_Abs"
begin
text {*
A tactic which solves all trivial cases in function
definitions, and leaves the others unchanged.
*}
ML {*
val all_trivials : (Proof.context -> Method.method) context_parser =
Scan.succeed (fn ctxt =>
let
val tac = TRYALL (SOLVED' (full_simp_tac (simpset_of ctxt)))
in
Method.SIMPLE_METHOD' (K tac)
end)
*}
method_setup all_trivials = {* all_trivials *} {* solves trivial goals *}
lemma Abs_lst1_fcb:
fixes x y :: "'a :: at_base"
and S T :: "'b :: fs"
assumes e: "(Abs_lst [atom x] T) = (Abs_lst [atom y] S)"
and f1: "\<lbrakk>x \<noteq> y; atom y \<sharp> T; atom x \<sharp> (atom y \<rightleftharpoons> atom x) \<bullet> T\<rbrakk> \<Longrightarrow> atom x \<sharp> f x T"
and f2: "\<lbrakk>x \<noteq> y; atom y \<sharp> T; atom x \<sharp> (atom y \<rightleftharpoons> atom x) \<bullet> T\<rbrakk> \<Longrightarrow> atom y \<sharp> f x T"
and p: "\<lbrakk>S = (atom x \<rightleftharpoons> atom y) \<bullet> T; x \<noteq> y; atom y \<sharp> T; atom x \<sharp> S\<rbrakk>
\<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> (f x T) = f y S"
and s: "sort_of (atom x) = sort_of (atom y)"
shows "f x T = f y S"
using e
apply(case_tac "atom x \<sharp> S")
apply(simp add: Abs1_eq_iff'[OF s s])
apply(elim conjE disjE)
apply(simp)
apply(rule trans)
apply(rule_tac p="(atom x \<rightleftharpoons> atom y)" in supp_perm_eq[symmetric])
apply(rule fresh_star_supp_conv)
apply(simp add: supp_swap fresh_star_def s f1 f2)
apply(simp add: swap_commute p)
apply(simp add: Abs1_eq_iff[OF s s])
done
lemma Abs_lst_fcb:
fixes xs ys :: "'a :: fs"
and S T :: "'b :: fs"
assumes e: "(Abs_lst (ba xs) T) = (Abs_lst (ba ys) S)"
and f1: "\<And>x. x \<in> set (ba xs) \<Longrightarrow> x \<sharp> f xs T"
and f2: "\<And>x. \<lbrakk>supp T - set (ba xs) = supp S - set (ba ys); x \<in> set (ba ys)\<rbrakk> \<Longrightarrow> x \<sharp> f xs T"
and eqv: "\<And>p. \<lbrakk>p \<bullet> T = S; p \<bullet> ba xs = ba ys; supp p \<subseteq> set (ba xs) \<union> set (ba ys)\<rbrakk>
\<Longrightarrow> p \<bullet> (f xs T) = f ys S"
shows "f xs T = f ys S"
using e apply -
apply(subst (asm) Abs_eq_iff2)
apply(simp add: alphas)
apply(elim exE conjE)
apply(rule trans)
apply(rule_tac p="p" in supp_perm_eq[symmetric])
apply(rule fresh_star_supp_conv)
apply(drule fresh_star_perm_set_conv)
apply(rule finite_Diff)
apply(rule finite_supp)
apply(subgoal_tac "(set (ba xs) \<union> set (ba ys)) \<sharp>* f xs T")
apply(metis Un_absorb2 fresh_star_Un)
apply(subst fresh_star_Un)
apply(rule conjI)
apply(simp add: fresh_star_def f1)
apply(simp add: fresh_star_def f2)
apply(simp add: eqv)
done
lemma Abs_set_fcb:
fixes xs ys :: "'a :: fs"
and S T :: "'b :: fs"
assumes e: "(Abs_set (ba xs) T) = (Abs_set (ba ys) S)"
and f1: "\<And>x. x \<in> ba xs \<Longrightarrow> x \<sharp> f xs T"
and f2: "\<And>x. \<lbrakk>supp T - ba xs = supp S - ba ys; x \<in> ba ys\<rbrakk> \<Longrightarrow> x \<sharp> f xs T"
and eqv: "\<And>p. \<lbrakk>p \<bullet> T = S; p \<bullet> ba xs = ba ys; supp p \<subseteq> ba xs \<union> ba ys\<rbrakk> \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
shows "f xs T = f ys S"
using e apply -
apply(subst (asm) Abs_eq_iff2)
apply(simp add: alphas)
apply(elim exE conjE)
apply(rule trans)
apply(rule_tac p="p" in supp_perm_eq[symmetric])
apply(rule fresh_star_supp_conv)
apply(drule fresh_star_perm_set_conv)
apply(rule finite_Diff)
apply(rule finite_supp)
apply(subgoal_tac "(ba xs \<union> ba ys) \<sharp>* f xs T")
apply(metis Un_absorb2 fresh_star_Un)
apply(subst fresh_star_Un)
apply(rule conjI)
apply(simp add: fresh_star_def f1)
apply(simp add: fresh_star_def f2)
apply(simp add: eqv)
done
lemma Abs_res_fcb:
fixes xs ys :: "('a :: at_base) set"
and S T :: "'b :: fs"
assumes e: "(Abs_res (atom ` xs) T) = (Abs_res (atom ` ys) S)"
and f1: "\<And>x. x \<in> atom ` xs \<Longrightarrow> x \<in> supp T \<Longrightarrow> x \<sharp> f xs T"
and f2: "\<And>x. \<lbrakk>supp T - atom ` xs = supp S - atom ` ys; x \<in> atom ` ys; x \<in> supp S\<rbrakk> \<Longrightarrow> x \<sharp> f xs T"
and eqv: "\<And>p. \<lbrakk>p \<bullet> T = S; supp p \<subseteq> atom ` xs \<inter> supp T \<union> atom ` ys \<inter> supp S;
p \<bullet> (atom ` xs \<inter> supp T) = atom ` ys \<inter> supp S\<rbrakk> \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
shows "f xs T = f ys S"
using e apply -
apply(subst (asm) Abs_eq_res_set)
apply(subst (asm) Abs_eq_iff2)
apply(simp add: alphas)
apply(elim exE conjE)
apply(rule trans)
apply(rule_tac p="p" in supp_perm_eq[symmetric])
apply(rule fresh_star_supp_conv)
apply(drule fresh_star_perm_set_conv)
apply(rule finite_Diff)
apply(rule finite_supp)
apply(subgoal_tac "(atom ` xs \<inter> supp T \<union> atom ` ys \<inter> supp S) \<sharp>* f xs T")
apply(metis Un_absorb2 fresh_star_Un)
apply(subst fresh_star_Un)
apply(rule conjI)
apply(simp add: fresh_star_def f1)
apply(subgoal_tac "supp T - atom ` xs = supp S - atom ` ys")
apply(simp add: fresh_star_def f2)
apply(blast)
apply(simp add: eqv)
done
lemma Abs_set_fcb2:
fixes as bs :: "atom set"
and x y :: "'b :: fs"
and c::"'c::fs"
assumes eq: "[as]set. x = [bs]set. y"
and fin: "finite as" "finite bs"
and fcb1: "as \<sharp>* f as x c"
and fresh1: "as \<sharp>* c"
and fresh2: "bs \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
shows "f as x c = f bs y c"
proof -
have "supp (as, x, c) supports (f as x c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
then have fin1: "finite (supp (f as x c))"
using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair)
have "supp (bs, y, c) supports (f bs y c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
then have fin2: "finite (supp (f bs y c))"
using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair)
obtain q::"perm" where
fr1: "(q \<bullet> as) \<sharp>* (x, c, f as x c, f bs y c)" and
fr2: "supp q \<sharp>* ([as]set. x)" and
inc: "supp q \<subseteq> as \<union> (q \<bullet> as)"
using at_set_avoiding3[where xs="as" and c="(x, c, f as x c, f bs y c)" and x="[as]set. x"]
fin1 fin2 fin
by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
have "[q \<bullet> as]set. (q \<bullet> x) = q \<bullet> ([as]set. x)" by simp
also have "\<dots> = [as]set. x"
by (simp only: fr2 perm_supp_eq)
finally have "[q \<bullet> as]set. (q \<bullet> x) = [bs]set. y" using eq by simp
then obtain r::perm where
qq1: "q \<bullet> x = r \<bullet> y" and
qq2: "q \<bullet> as = r \<bullet> bs" and
qq3: "supp r \<subseteq> (q \<bullet> as) \<union> bs"
apply(drule_tac sym)
apply(simp only: Abs_eq_iff2 alphas)
apply(erule exE)
apply(erule conjE)+
apply(drule_tac x="p" in meta_spec)
apply(simp add: set_eqvt)
apply(blast)
done
have "as \<sharp>* f as x c" by (rule fcb1)
then have "q \<bullet> (as \<sharp>* f as x c)"
by (simp add: permute_bool_def)
then have "(q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm1)
using inc fresh1 fr1
apply(auto simp add: fresh_star_def fresh_Pair)
done
then have "(r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
then have "r \<bullet> (bs \<sharp>* f bs y c)"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm2[symmetric])
using qq3 fresh2 fr1
apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
done
then have fcb2: "bs \<sharp>* f bs y c" by (simp add: permute_bool_def)
have "f as x c = q \<bullet> (f as x c)"
apply(rule perm_supp_eq[symmetric])
using inc fcb1 fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c"
apply(rule perm1)
using inc fresh1 fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
also have "\<dots> = r \<bullet> (f bs y c)"
apply(rule perm2[symmetric])
using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
also have "... = f bs y c"
apply(rule perm_supp_eq)
using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
finally show ?thesis by simp
qed
text {* NOT DONE
lemma Abs_res_fcb2:
fixes as bs :: "atom set"
and x y :: "'b :: fs"
and c::"'c::fs"
assumes eq: "[as]res. x = [bs]res. y"
and fin: "finite as" "finite bs"
and fcb1: "as \<sharp>* f as x c"
and fresh1: "as \<sharp>* c"
and fresh2: "bs \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
shows "f as x c = f bs y c"
proof -
have "supp (as, x, c) supports (f as x c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
then have fin1: "finite (supp (f as x c))"
using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair)
have "supp (bs, y, c) supports (f bs y c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
then have fin2: "finite (supp (f bs y c))"
using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair)
obtain q::"perm" where
fr1: "(q \<bullet> as) \<sharp>* (x, c, f as x c, f bs y c)" and
fr2: "supp q \<sharp>* ([as]res. x)" and
inc: "supp q \<subseteq> as \<union> (q \<bullet> as)"
using at_set_avoiding3[where xs="as" and c="(x, c, f as x c, f bs y c)" and x="[as]res. x"]
fin1 fin2 fin
by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
have "[q \<bullet> as]res. (q \<bullet> x) = q \<bullet> ([as]res. x)" by simp
also have "\<dots> = [as]res. x"
by (simp only: fr2 perm_supp_eq)
finally have "[q \<bullet> as]res. (q \<bullet> x) = [bs]res. y" using eq by simp
then obtain r::perm where
qq1: "q \<bullet> x = r \<bullet> y" and
qq2: "(q \<bullet> as \<inter> supp (q \<bullet> x)) = r \<bullet> (bs \<inter> supp y)" and
qq3: "supp r \<subseteq> bs \<inter> supp y \<union> q \<bullet> as \<inter> supp (q \<bullet> x)"
apply(drule_tac sym)
apply(subst(asm) Abs_eq_res_set)
apply(simp only: Abs_eq_iff2 alphas)
apply(erule exE)
apply(erule conjE)+
apply(drule_tac x="p" in meta_spec)
apply(simp add: set_eqvt)
done
have "(as \<inter> supp x) \<sharp>* f (as \<inter> supp x) x c" sorry (* FCB? *)
then have "q \<bullet> ((as \<inter> supp x) \<sharp>* f (as \<inter> supp x) x c)"
by (simp add: permute_bool_def)
then have "(q \<bullet> (as \<inter> supp x)) \<sharp>* f (q \<bullet> (as \<inter> supp x)) (q \<bullet> x) c"
apply(simp add: fresh_star_eqvt set_eqvt)
sorry (* perm? *)
then have "r \<bullet> (bs \<inter> supp y) \<sharp>* f (r \<bullet> (bs \<inter> supp y)) (r \<bullet> y) c" using qq2
apply (simp add: inter_eqvt)
sorry
(* rest similar reversing it other way around... *)
show ?thesis sorry
qed
*}
lemma Abs_lst_fcb2:
fixes as bs :: "atom list"
and x y :: "'b :: fs"
and c::"'c::fs"
assumes eq: "[as]lst. x = [bs]lst. y"
and fcb1: "(set as) \<sharp>* f as x c"
and fresh1: "set as \<sharp>* c"
and fresh2: "set bs \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
shows "f as x c = f bs y c"
proof -
have "supp (as, x, c) supports (f as x c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
then have fin1: "finite (supp (f as x c))"
by (auto intro: supports_finite simp add: finite_supp)
have "supp (bs, y, c) supports (f bs y c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
then have fin2: "finite (supp (f bs y c))"
by (auto intro: supports_finite simp add: finite_supp)
obtain q::"perm" where
fr1: "(q \<bullet> (set as)) \<sharp>* (x, c, f as x c, f bs y c)" and
fr2: "supp q \<sharp>* Abs_lst as x" and
inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)"
using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"]
fin1 fin2
by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp
also have "\<dots> = Abs_lst as x"
by (simp only: fr2 perm_supp_eq)
finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using eq by simp
then obtain r::perm where
qq1: "q \<bullet> x = r \<bullet> y" and
qq2: "q \<bullet> as = r \<bullet> bs" and
qq3: "supp r \<subseteq> (q \<bullet> (set as)) \<union> set bs"
apply(drule_tac sym)
apply(simp only: Abs_eq_iff2 alphas)
apply(erule exE)
apply(erule conjE)+
apply(drule_tac x="p" in meta_spec)
apply(simp add: set_eqvt)
apply(blast)
done
have "(set as) \<sharp>* f as x c" by (rule fcb1)
then have "q \<bullet> ((set as) \<sharp>* f as x c)"
by (simp add: permute_bool_def)
then have "set (q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm1)
using inc fresh1 fr1
apply(auto simp add: fresh_star_def fresh_Pair)
done
then have "set (r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
then have "r \<bullet> ((set bs) \<sharp>* f bs y c)"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm2[symmetric])
using qq3 fresh2 fr1
apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
done
then have fcb2: "(set bs) \<sharp>* f bs y c" by (simp add: permute_bool_def)
have "f as x c = q \<bullet> (f as x c)"
apply(rule perm_supp_eq[symmetric])
using inc fcb1 fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c"
apply(rule perm1)
using inc fresh1 fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
also have "\<dots> = r \<bullet> (f bs y c)"
apply(rule perm2[symmetric])
using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
also have "... = f bs y c"
apply(rule perm_supp_eq)
using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
finally show ?thesis by simp
qed
lemma Abs_lst1_fcb2:
fixes a b :: "atom"
and x y :: "'b :: fs"
and c::"'c :: fs"
assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)"
and fcb1: "a \<sharp> f a x c"
and fresh: "{a, b} \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c"
shows "f a x c = f b y c"
using e
apply(drule_tac Abs_lst_fcb2[where c="c" and f="\<lambda>(as::atom list) . f (hd as)"])
apply(simp_all)
using fcb1 fresh perm1 perm2
apply(simp_all add: fresh_star_def)
done
lemma Abs_lst1_fcb2':
fixes a b :: "'a::at"
and x y :: "'b :: fs"
and c::"'c :: fs"
assumes e: "(Abs_lst [atom a] x) = (Abs_lst [atom b] y)"
and fcb1: "atom a \<sharp> f a x c"
and fresh: "{atom a, atom b} \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c"
shows "f a x c = f b y c"
using e
apply(drule_tac Abs_lst1_fcb2[where c="c" and f="\<lambda>a . f ((inv atom) a)"])
using fcb1 fresh perm1 perm2
apply(simp_all add: fresh_star_def inv_f_f inj_on_def atom_eqvt)
done
end