theory LarryDatatypeimports Main "../Quotient" "../Quotient_Syntax"beginsubsection{*Defining the Free Algebra*}datatype freemsg = NONCE nat | MPAIR freemsg freemsg | CRYPT nat freemsg | DECRYPT nat freemsginductive msgrel::"freemsg \<Rightarrow> freemsg \<Rightarrow> bool" (infixl "\<sim>" 50)where CD: "CRYPT K (DECRYPT K X) \<sim> X"| DC: "DECRYPT K (CRYPT K X) \<sim> X"| NONCE: "NONCE N \<sim> NONCE N"| MPAIR: "\<lbrakk>X \<sim> X'; Y \<sim> Y'\<rbrakk> \<Longrightarrow> MPAIR X Y \<sim> MPAIR X' Y'"| CRYPT: "X \<sim> X' \<Longrightarrow> CRYPT K X \<sim> CRYPT K X'"| DECRYPT: "X \<sim> X' \<Longrightarrow> DECRYPT K X \<sim> DECRYPT K X'"| SYM: "X \<sim> Y \<Longrightarrow> Y \<sim> X"| TRANS: "\<lbrakk>X \<sim> Y; Y \<sim> Z\<rbrakk> \<Longrightarrow> X \<sim> Z"lemmas msgrel.intros[intro]text{*Proving that it is an equivalence relation*}lemma msgrel_refl: "X \<sim> X"by (induct X, (blast intro: msgrel.intros)+)theorem equiv_msgrel: "equivp msgrel"proof (rule equivpI) show "reflp msgrel" by (simp add: reflp_def msgrel_refl) show "symp msgrel" by (simp add: symp_def, blast intro: msgrel.SYM) show "transp msgrel" by (simp add: transp_def, blast intro: msgrel.TRANS)qedsubsection{*Some Functions on the Free Algebra*}subsubsection{*The Set of Nonces*}fun freenonces :: "freemsg \<Rightarrow> nat set"where "freenonces (NONCE N) = {N}"| "freenonces (MPAIR X Y) = freenonces X \<union> freenonces Y"| "freenonces (CRYPT K X) = freenonces X"| "freenonces (DECRYPT K X) = freenonces X"theorem msgrel_imp_eq_freenonces: assumes a: "U \<sim> V" shows "freenonces U = freenonces V" using a by (induct) (auto) subsubsection{*The Left Projection*}text{*A function to return the left part of the top pair in a message. It willbe lifted to the initial algrebra, to serve as an example of that process.*}fun freeleft :: "freemsg \<Rightarrow> freemsg"where "freeleft (NONCE N) = NONCE N"| "freeleft (MPAIR X Y) = X"| "freeleft (CRYPT K X) = freeleft X"| "freeleft (DECRYPT K X) = freeleft X"text{*This theorem lets us prove that the left function respects theequivalence relation. It also helps us prove that MPair (the abstract constructor) is injective*}lemma msgrel_imp_eqv_freeleft_aux: shows "freeleft U \<sim> freeleft U" by (induct rule: freeleft.induct) (auto)theorem msgrel_imp_eqv_freeleft: assumes a: "U \<sim> V" shows "freeleft U \<sim> freeleft V" using a by (induct) (auto intro: msgrel_imp_eqv_freeleft_aux)subsubsection{*The Right Projection*}text{*A function to return the right part of the top pair in a message.*}fun freeright :: "freemsg \<Rightarrow> freemsg"where "freeright (NONCE N) = NONCE N"| "freeright (MPAIR X Y) = Y"| "freeright (CRYPT K X) = freeright X"| "freeright (DECRYPT K X) = freeright X"text{*This theorem lets us prove that the right function respects theequivalence relation. It also helps us prove that MPair (the abstract constructor) is injective*}lemma msgrel_imp_eqv_freeright_aux: shows "freeright U \<sim> freeright U" by (induct rule: freeright.induct) (auto)theorem msgrel_imp_eqv_freeright: assumes a: "U \<sim> V" shows "freeright U \<sim> freeright V" using a by (induct) (auto intro: msgrel_imp_eqv_freeright_aux)subsubsection{*The Discriminator for Constructors*}text{*A function to distinguish nonces, mpairs and encryptions*}fun freediscrim :: "freemsg \<Rightarrow> int"where "freediscrim (NONCE N) = 0" | "freediscrim (MPAIR X Y) = 1" | "freediscrim (CRYPT K X) = freediscrim X + 2" | "freediscrim (DECRYPT K X) = freediscrim X - 2"text{*This theorem helps us prove @{term "Nonce N \<noteq> MPair X Y"}*}theorem msgrel_imp_eq_freediscrim: assumes a: "U \<sim> V" shows "freediscrim U = freediscrim V" using a by (induct) (auto)subsection{*The Initial Algebra: A Quotiented Message Type*}quotient_type msg = freemsg / msgrel by (rule equiv_msgrel)text{*The abstract message constructors*}quotient_definition "Nonce :: nat \<Rightarrow> msg"is "NONCE"quotient_definition "MPair :: msg \<Rightarrow> msg \<Rightarrow> msg"is "MPAIR"quotient_definition "Crypt :: nat \<Rightarrow> msg \<Rightarrow> msg"is "CRYPT"quotient_definition "Decrypt :: nat \<Rightarrow> msg \<Rightarrow> msg"is "DECRYPT"lemma [quot_respect]: shows "(op = ===> op \<sim> ===> op \<sim>) CRYPT CRYPT"by (auto intro: CRYPT)lemma [quot_respect]: shows "(op = ===> op \<sim> ===> op \<sim>) DECRYPT DECRYPT"by (auto intro: DECRYPT)text{*Establishing these two equations is the point of the whole exercise*}theorem CD_eq [simp]: shows "Crypt K (Decrypt K X) = X" by (lifting CD)theorem DC_eq [simp]: shows "Decrypt K (Crypt K X) = X" by (lifting DC)subsection{*The Abstract Function to Return the Set of Nonces*}quotient_definition "nonces:: msg \<Rightarrow> nat set"is "freenonces"text{*Now prove the four equations for @{term nonces}*}lemma [quot_respect]: shows "(op \<sim> ===> op =) freenonces freenonces" by (simp add: msgrel_imp_eq_freenonces)lemma [quot_respect]: shows "(op = ===> op \<sim>) NONCE NONCE" by (simp add: NONCE)lemma nonces_Nonce [simp]: shows "nonces (Nonce N) = {N}" by (lifting freenonces.simps(1))lemma [quot_respect]: shows " (op \<sim> ===> op \<sim> ===> op \<sim>) MPAIR MPAIR" by (simp add: MPAIR)lemma nonces_MPair [simp]: shows "nonces (MPair X Y) = nonces X \<union> nonces Y" by (lifting freenonces.simps(2))lemma nonces_Crypt [simp]: shows "nonces (Crypt K X) = nonces X" by (lifting freenonces.simps(3))lemma nonces_Decrypt [simp]: shows "nonces (Decrypt K X) = nonces X" by (lifting freenonces.simps(4))subsection{*The Abstract Function to Return the Left Part*}quotient_definition "left:: msg \<Rightarrow> msg"is "freeleft"lemma [quot_respect]: shows "(op \<sim> ===> op \<sim>) freeleft freeleft" by (simp add: msgrel_imp_eqv_freeleft)lemma left_Nonce [simp]: shows "left (Nonce N) = Nonce N" by (lifting freeleft.simps(1))lemma left_MPair [simp]: shows "left (MPair X Y) = X" by (lifting freeleft.simps(2))lemma left_Crypt [simp]: shows "left (Crypt K X) = left X" by (lifting freeleft.simps(3))lemma left_Decrypt [simp]: shows "left (Decrypt K X) = left X" by (lifting freeleft.simps(4))subsection{*The Abstract Function to Return the Right Part*}quotient_definition "right:: msg \<Rightarrow> msg"is "freeright"text{*Now prove the four equations for @{term right}*}lemma [quot_respect]: shows "(op \<sim> ===> op \<sim>) freeright freeright" by (simp add: msgrel_imp_eqv_freeright)lemma right_Nonce [simp]: shows "right (Nonce N) = Nonce N" by (lifting freeright.simps(1))lemma right_MPair [simp]: shows "right (MPair X Y) = Y" by (lifting freeright.simps(2))lemma right_Crypt [simp]: shows "right (Crypt K X) = right X" by (lifting freeright.simps(3))lemma right_Decrypt [simp]: shows "right (Decrypt K X) = right X" by (lifting freeright.simps(4))subsection{*Injectivity Properties of Some Constructors*}lemma NONCE_imp_eq: shows "NONCE m \<sim> NONCE n \<Longrightarrow> m = n" by (drule msgrel_imp_eq_freenonces, simp)text{*Can also be proved using the function @{term nonces}*}lemma Nonce_Nonce_eq [iff]: shows "(Nonce m = Nonce n) = (m = n)"proof assume "Nonce m = Nonce n" then show "m = n" by (lifting NONCE_imp_eq)next assume "m = n" then show "Nonce m = Nonce n" by simpqedlemma MPAIR_imp_eqv_left: shows "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> X \<sim> X'" by (drule msgrel_imp_eqv_freeleft) (simp)lemma MPair_imp_eq_left: assumes eq: "MPair X Y = MPair X' Y'" shows "X = X'" using eq by (lifting MPAIR_imp_eqv_left)lemma MPAIR_imp_eqv_right: shows "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> Y \<sim> Y'" by (drule msgrel_imp_eqv_freeright) (simp)lemma MPair_imp_eq_right: shows "MPair X Y = MPair X' Y' \<Longrightarrow> Y = Y'" by (lifting MPAIR_imp_eqv_right)theorem MPair_MPair_eq [iff]: shows "(MPair X Y = MPair X' Y') = (X=X' & Y=Y')" by (blast dest: MPair_imp_eq_left MPair_imp_eq_right)lemma NONCE_neqv_MPAIR: shows "\<not>(NONCE m \<sim> MPAIR X Y)" by (auto dest: msgrel_imp_eq_freediscrim)theorem Nonce_neq_MPair [iff]: shows "Nonce N \<noteq> MPair X Y" by (lifting NONCE_neqv_MPAIR)text{*Example suggested by a referee*}lemma CRYPT_NONCE_neq_NONCE: shows "\<not>(CRYPT K (NONCE M) \<sim> NONCE N)" by (auto dest: msgrel_imp_eq_freediscrim)theorem Crypt_Nonce_neq_Nonce: shows "Crypt K (Nonce M) \<noteq> Nonce N" by (lifting CRYPT_NONCE_neq_NONCE)text{*...and many similar results*}lemma CRYPT2_NONCE_neq_NONCE: shows "\<not>(CRYPT K (CRYPT K' (NONCE M)) \<sim> NONCE N)" by (auto dest: msgrel_imp_eq_freediscrim) theorem Crypt2_Nonce_neq_Nonce: shows "Crypt K (Crypt K' (Nonce M)) \<noteq> Nonce N" by (lifting CRYPT2_NONCE_neq_NONCE) theorem Crypt_Crypt_eq [iff]: shows "(Crypt K X = Crypt K X') = (X=X')" proof assume "Crypt K X = Crypt K X'" hence "Decrypt K (Crypt K X) = Decrypt K (Crypt K X')" by simp thus "X = X'" by simpnext assume "X = X'" thus "Crypt K X = Crypt K X'" by simpqedtheorem Decrypt_Decrypt_eq [iff]: shows "(Decrypt K X = Decrypt K X') = (X=X')" proof assume "Decrypt K X = Decrypt K X'" hence "Crypt K (Decrypt K X) = Crypt K (Decrypt K X')" by simp thus "X = X'" by simpnext assume "X = X'" thus "Decrypt K X = Decrypt K X'" by simpqedlemma msg_induct_aux: shows "\<lbrakk>\<And>N. P (Nonce N); \<And>X Y. \<lbrakk>P X; P Y\<rbrakk> \<Longrightarrow> P (MPair X Y); \<And>K X. P X \<Longrightarrow> P (Crypt K X); \<And>K X. P X \<Longrightarrow> P (Decrypt K X)\<rbrakk> \<Longrightarrow> P msg" by (lifting freemsg.induct)lemma msg_induct [case_names Nonce MPair Crypt Decrypt, cases type: msg]: assumes N: "\<And>N. P (Nonce N)" and M: "\<And>X Y. \<lbrakk>P X; P Y\<rbrakk> \<Longrightarrow> P (MPair X Y)" and C: "\<And>K X. P X \<Longrightarrow> P (Crypt K X)" and D: "\<And>K X. P X \<Longrightarrow> P (Decrypt K X)" shows "P msg" using N M C D by (rule msg_induct_aux)subsection{*The Abstract Discriminator*}text{*However, as @{text Crypt_Nonce_neq_Nonce} above illustrates, we don'tneed this function in order to prove discrimination theorems.*}quotient_definition "discrim:: msg \<Rightarrow> int"is "freediscrim"text{*Now prove the four equations for @{term discrim}*}lemma [quot_respect]: shows "(op \<sim> ===> op =) freediscrim freediscrim" by (auto simp add: msgrel_imp_eq_freediscrim)lemma discrim_Nonce [simp]: shows "discrim (Nonce N) = 0" by (lifting freediscrim.simps(1))lemma discrim_MPair [simp]: shows "discrim (MPair X Y) = 1" by (lifting freediscrim.simps(2))lemma discrim_Crypt [simp]: shows "discrim (Crypt K X) = discrim X + 2" by (lifting freediscrim.simps(3))lemma discrim_Decrypt [simp]: shows "discrim (Decrypt K X) = discrim X - 2" by (lifting freediscrim.simps(4))end