an alternative FCB for Abs_lst1; seems simpler but not as simple as I thought; not sure whether it generalises to multiple binders.
theory Multi_Recs2
imports "../Nominal2"
begin
(*
multiple recursive binders - multiple letrecs with multiple
clauses for each functions
example 8 from Peter Sewell's bestiary (originally due
to James Cheney)
*)
atom_decl name
nominal_datatype fun_recs: exp =
Var name
| Unit
| Pair exp exp
| LetRec l::lrbs e::exp bind (set) "b_lrbs l" in l e
and fnclause =
K x::name p::pat f::exp bind (set) "b_pat p" in f
and fnclauses =
S fnclause
| ORs fnclause fnclauses
and lrb =
Clause fnclauses
and lrbs =
Single lrb
| More lrb lrbs
and pat =
PVar name
| PUnit
| PPair pat pat
binder
b_lrbs :: "lrbs \<Rightarrow> atom set" and
b_pat :: "pat \<Rightarrow> atom set" and
b_fnclauses :: "fnclauses \<Rightarrow> atom set" and
b_fnclause :: "fnclause \<Rightarrow> atom set" and
b_lrb :: "lrb \<Rightarrow> atom set"
where
"b_lrbs (Single l) = b_lrb l"
| "b_lrbs (More l ls) = b_lrb l \<union> b_lrbs ls"
| "b_pat (PVar x) = {atom x}"
| "b_pat (PUnit) = {}"
| "b_pat (PPair p1 p2) = b_pat p1 \<union> b_pat p2"
| "b_fnclauses (S fc) = (b_fnclause fc)"
| "b_fnclauses (ORs fc fcs) = (b_fnclause fc) \<union> (b_fnclauses fcs)"
| "b_lrb (Clause fcs) = (b_fnclauses fcs)"
| "b_fnclause (K x pat exp) = {atom x}"
thm fun_recs.permute_bn
thm fun_recs.perm_bn_alpha
thm fun_recs.perm_bn_simps
thm fun_recs.bn_finite
thm fun_recs.inducts
thm fun_recs.distinct
thm fun_recs.induct
thm fun_recs.inducts
thm fun_recs.exhaust
thm fun_recs.fv_defs
thm fun_recs.bn_defs
thm fun_recs.perm_simps
thm fun_recs.eq_iff
thm fun_recs.fv_bn_eqvt
thm fun_recs.size_eqvt
thm fun_recs.supports
thm fun_recs.fsupp
thm fun_recs.supp
thm fun_recs.distinct
thm fun_recs.induct
thm fun_recs.inducts
thm fun_recs.exhaust
thm fun_recs.fv_defs
thm fun_recs.bn_defs
thm fun_recs.perm_simps
thm fun_recs.eq_iff
thm fun_recs.fv_bn_eqvt
thm fun_recs.size_eqvt
thm fun_recs.supports
thm fun_recs.fsupp
thm fun_recs.supp
lemma
fixes c::"'a::fs"
assumes "\<And>name c. P1 c (Var name)"
and "\<And>c. P1 c Unit"
and "\<And>exp1 exp2 c. \<lbrakk>\<And>c. P1 c exp1; \<And>c. P1 c exp2\<rbrakk> \<Longrightarrow> P1 c (Multi_Recs2.Pair exp1 exp2)"
and "\<And>lrbs exp c. \<lbrakk>b_lrbs lrbs \<sharp>* c; \<And>c. P5 c lrbs; \<And>c. P1 c exp\<rbrakk> \<Longrightarrow> P1 c (LetRec lrbs exp)"
and "\<And>name pat exp c. \<lbrakk>b_pat pat \<sharp>* c; \<And>c. P6 c pat; \<And>c. P1 c exp\<rbrakk> \<Longrightarrow> P2 c (K name pat exp)"
and "\<And>fnclause c. (\<And>c. P2 c fnclause) \<Longrightarrow> P3 c (S fnclause)"
and "\<And>fnclause fnclauses c. \<lbrakk>\<And>c. P2 c fnclause; \<And>c. P3 c fnclauses\<rbrakk> \<Longrightarrow>
P3 c (ORs fnclause fnclauses)"
and "\<And>fnclauses c. (\<And>c. P3 c fnclauses) \<Longrightarrow> P4 c (Clause fnclauses)"
and "\<And>lrb c. (\<And>c. P4 c lrb) \<Longrightarrow> P5 c (Single lrb)"
and "\<And>lrb lrbs c. \<lbrakk>\<And>c. P4 c lrb; \<And>c. P5 c lrbs\<rbrakk> \<Longrightarrow> P5 c (More lrb lrbs)"
and "\<And>name c. P6 c (PVar name)"
and "\<And>c. P6 c PUnit"
and "\<And>pat1 pat2 c. \<lbrakk>\<And>c. P6 c pat1; \<And>c. P6 c pat2\<rbrakk> \<Longrightarrow> P6 c (PPair pat1 pat2)"
shows "P1 c exp" and "P2 c fnclause" and "P3 c fnclauses" and "P4 c lrb" and "P5 c lrbs" and "P6 c pat"
apply(raw_tactic {* Induction_Schema.induction_schema_tac @{context} @{thms assms} *})
apply(rule_tac y="exp" and c="c" in fun_recs.strong_exhaust(1))
apply(simp_all)[4]
apply(blast)
apply(rule_tac ya="fnclause" and c="c" in fun_recs.strong_exhaust(2))
apply(blast)
apply(rule_tac yb="fnclauses" in fun_recs.strong_exhaust(3))
apply(blast)
apply(blast)
apply(rule_tac yc="lrb" in fun_recs.strong_exhaust(4))
apply(blast)
apply(rule_tac yd="lrbs" in fun_recs.strong_exhaust(5))
apply(blast)
apply(blast)
apply(rule_tac ye="pat" in fun_recs.strong_exhaust(6))
apply(blast)
apply(blast)
apply(blast)
apply(tactic {* prove_termination_ind @{context} 1 *})
apply(simp_all add: fun_recs.size)
done
end