an alternative FCB for Abs_lst1; seems simpler but not as simple as I thought; not sure whether it generalises to multiple binders.
header {* CPS transformation of Danvy and Filinski *}
theory CPS3_DanvyFilinski imports Lt begin
nominal_primrec
CPS1 :: "lt \<Rightarrow> (lt \<Rightarrow> lt) \<Rightarrow> lt" ("_*_" [100,100] 100)
and
CPS2 :: "lt \<Rightarrow> lt \<Rightarrow> lt" ("_^_" [100,100] 100)
where
"eqvt k \<Longrightarrow> (x~)*k = k (x~)"
| "eqvt k \<Longrightarrow> (M$N)*k = M*(%m. (N*(%n.((m $ n) $ (Abs c (k (c~)))))))"
| "eqvt k \<Longrightarrow> atom c \<sharp> (x, M) \<Longrightarrow> (Abs x M)*k = k (Abs x (Abs c (M^(c~))))"
| "\<not>eqvt k \<Longrightarrow> (CPS1 t k) = t"
| "(x~)^l = l $ (x~)"
| "(M$N)^l = M*(%m. (N*(%n.((m $ n) $ l))))"
| "atom c \<sharp> (x, M) \<Longrightarrow> (Abs x M)^l = l $ (Abs x (Abs c (M^(c~))))"
apply (simp only: eqvt_def CPS1_CPS2_graph_def)
apply (rule, perm_simp, rule)
apply auto
apply (case_tac x)
apply (case_tac a)
apply (case_tac "eqvt b")
apply (rule_tac y="aa" in lt.strong_exhaust)
apply auto[4]
apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh)
apply (simp add: fresh_at_base Abs1_eq_iff)
apply (case_tac b)
apply (rule_tac y="a" in lt.strong_exhaust)
apply auto[3]
apply blast
apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh)
apply (simp add: fresh_at_base Abs1_eq_iff)
apply blast
--"-"
apply (subgoal_tac "Abs c (ka (c~)) = Abs ca (ka (ca~))")
apply (simp only:)
apply (simp add: Abs1_eq_iff)
apply (case_tac "c=ca")
apply simp_all[2]
apply rule
apply (perm_simp)
apply (simp add: eqvt_def)
apply (simp add: fresh_def)
apply (rule contra_subsetD[OF supp_fun_app])
back
apply (simp add: supp_fun_eqvt lt.supp supp_at_base)
--"-"
apply (rule arg_cong)
back
apply simp
apply (thin_tac "eqvt ka")
apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh)
apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))")
prefer 2
apply (simp add: Abs1_eq_iff')
apply (case_tac "c = a")
apply simp_all[2]
apply rule
apply (simp add: eqvt_at_def)
apply (simp add: swap_fresh_fresh fresh_Pair_elim)
apply (erule fresh_eqvt_at)
apply (simp add: supp_Inr finite_supp)
apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))")
prefer 2
apply (simp add: Abs1_eq_iff')
apply (case_tac "ca = a")
apply simp_all[2]
apply rule
apply (simp add: eqvt_at_def)
apply (simp add: swap_fresh_fresh fresh_Pair_elim)
apply (erule fresh_eqvt_at)
apply (simp add: supp_Inr finite_supp)
apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
apply (simp only: )
apply (erule Abs_lst1_fcb)
apply (simp add: Abs_fresh_iff)
apply (drule sym)
apply (simp only:)
apply (simp add: Abs_fresh_iff lt.fresh)
apply clarify
apply (erule fresh_eqvt_at)
apply (simp add: supp_Inr finite_supp)
apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
apply (drule sym)
apply (drule sym)
apply (drule sym)
apply (simp only:)
apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))")
apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))")
apply (thin_tac "atom a \<sharp> (c, ca, x, xa, M, Ma)")
apply (simp add: fresh_Pair_elim)
apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]])
back
back
back
apply assumption
apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh)
apply (case_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> c = ca")
apply simp_all[3]
apply rule
apply (case_tac "c = xa")
apply simp_all[2]
apply (simp add: eqvt_at_def)
apply clarify
apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh)
apply (simp add: eqvt_at_def)
apply clarify
apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh)
apply (case_tac "c = xa")
apply simp
apply (subgoal_tac "((ca \<leftrightarrow> x) \<bullet> (atom x)) \<sharp> (ca \<leftrightarrow> x) \<bullet> CPS1_CPS2_sumC (Inr (Ma, ca~))")
apply (simp add: atom_eqvt eqvt_at_def)
apply (simp add: flip_fresh_fresh)
apply (subst fresh_permute_iff)
apply (erule fresh_eqvt_at)
apply (simp add: supp_Inr finite_supp)
apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair)
apply simp
apply clarify
apply (subgoal_tac "atom ca \<sharp> (atom x \<rightleftharpoons> atom xa) \<bullet> CPS1_CPS2_sumC (Inr (M, c~))")
apply (simp add: eqvt_at_def)
apply (subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> atom ca \<sharp> CPS1_CPS2_sumC (Inr (M, c~))")
apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
apply (erule fresh_eqvt_at)
apply (simp add: finite_supp supp_Inr)
apply (simp add: fresh_Inr fresh_Pair lt.fresh)
apply rule
apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
apply (simp add: fresh_def supp_at_base)
apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3))
--"-"
apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh)
apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))")
prefer 2
apply (simp add: Abs1_eq_iff')
apply (case_tac "c = a")
apply simp_all[2]
apply rule
apply (simp add: eqvt_at_def)
apply (simp add: swap_fresh_fresh fresh_Pair_elim)
apply (erule fresh_eqvt_at)
apply (simp add: supp_Inr finite_supp)
apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))")
prefer 2
apply (simp add: Abs1_eq_iff')
apply (case_tac "ca = a")
apply simp_all[2]
apply rule
apply (simp add: eqvt_at_def)
apply (simp add: swap_fresh_fresh fresh_Pair_elim)
apply (erule fresh_eqvt_at)
apply (simp add: supp_Inr finite_supp)
apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
apply (simp only: )
apply (erule Abs_lst1_fcb)
apply (simp add: Abs_fresh_iff)
apply (drule sym)
apply (simp only:)
apply (simp add: Abs_fresh_iff lt.fresh)
apply clarify
apply (erule fresh_eqvt_at)
apply (simp add: supp_Inr finite_supp)
apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
apply (drule sym)
apply (drule sym)
apply (drule sym)
apply (simp only:)
apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))")
apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))")
apply (thin_tac "atom a \<sharp> (c, ca, x, xa, M, Ma)")
apply (simp add: fresh_Pair_elim)
apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]])
back
back
back
apply assumption
apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh)
apply (case_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> c = ca")
apply simp_all[3]
apply rule
apply (case_tac "c = xa")
apply simp_all[2]
apply (simp add: eqvt_at_def)
apply clarify
apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh)
apply (simp add: eqvt_at_def)
apply clarify
apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh)
apply (case_tac "c = xa")
apply simp
apply (subgoal_tac "((ca \<leftrightarrow> x) \<bullet> (atom x)) \<sharp> (ca \<leftrightarrow> x) \<bullet> CPS1_CPS2_sumC (Inr (Ma, ca~))")
apply (simp add: atom_eqvt eqvt_at_def)
apply (simp add: flip_fresh_fresh)
apply (subst fresh_permute_iff)
apply (erule fresh_eqvt_at)
apply (simp add: supp_Inr finite_supp)
apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair)
apply simp
apply clarify
apply (subgoal_tac "atom ca \<sharp> (atom x \<rightleftharpoons> atom xa) \<bullet> CPS1_CPS2_sumC (Inr (M, c~))")
apply (simp add: eqvt_at_def)
apply (subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> atom ca \<sharp> CPS1_CPS2_sumC (Inr (M, c~))")
apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
apply (erule fresh_eqvt_at)
apply (simp add: finite_supp supp_Inr)
apply (simp add: fresh_Inr fresh_Pair lt.fresh)
apply rule
apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
apply (simp add: fresh_def supp_at_base)
apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3))
done
termination
by lexicographic_order
definition psi:: "lt => lt"
where [simp]: "psi V == V*(\<lambda>x. x)"
section {* Simple consequence of CPS *}
lemma [simp]: "eqvt (\<lambda>x\<Colon>lt. x)"
by (simp add: eqvt_def eqvt_bound eqvt_lambda)
lemma value_eq1 : "isValue V \<Longrightarrow> eqvt k \<Longrightarrow> V*k = k (psi V)"
apply (cases V rule: lt.exhaust)
apply simp_all
apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh)
apply simp
done
lemma value_eq2 : "isValue V \<Longrightarrow> V^K = K $ (psi V)"
apply (cases V rule: lt.exhaust)
apply simp_all
apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh)
apply simp
done
lemma value_eq3' : "~isValue M \<Longrightarrow> eqvt k \<Longrightarrow> M*k = (M^(Abs n (k (Var n))))"
by (cases M rule: lt.exhaust) auto
end