signature QUOTIENT_TERM =
sig
exception LIFT_MATCH of string
datatype flag = absF | repF
val absrep_fun: flag -> Proof.context -> (typ * typ) -> term
val absrep_fun_chk: flag -> Proof.context -> (typ * typ) -> term
val regularize_trm: Proof.context -> (term * term) -> term
val regularize_trm_chk: Proof.context -> (term * term) -> term
val inj_repabs_trm: Proof.context -> (term * term) -> term
val inj_repabs_trm_chk: Proof.context -> (term * term) -> term
end;
structure Quotient_Term: QUOTIENT_TERM =
struct
open Quotient_Info;
exception LIFT_MATCH of string
(*******************************)
(* Aggregate Rep/Abs Functions *)
(*******************************)
(* The flag repF is for types in negative position, while absF is *)
(* for types in positive position. Because of this, function types *)
(* need to be treated specially, since there the polarity changes. *)
datatype flag = absF | repF
fun negF absF = repF
| negF repF = absF
fun mk_identity ty = Const (@{const_name "id"}, ty --> ty)
fun mk_compose flag (trm1, trm2) =
case flag of
absF => Const (@{const_name "comp"}, dummyT) $ trm1 $ trm2
| repF => Const (@{const_name "comp"}, dummyT) $ trm2 $ trm1
fun get_map ctxt ty_str =
let
val thy = ProofContext.theory_of ctxt
val exc = LIFT_MATCH (space_implode " " ["absrep_fun: no map for type", quote ty_str, "."])
val mapfun = #mapfun (maps_lookup thy ty_str) handle NotFound => raise exc
in
Const (mapfun, dummyT)
end
fun get_absrep_const flag ctxt _ qty =
(* FIXME: check here that the type-constructors of _ and qty are related *)
let
val thy = ProofContext.theory_of ctxt
val qty_name = Long_Name.base_name (fst (dest_Type qty))
in
case flag of
absF => Const (Sign.full_bname thy ("abs_" ^ qty_name), dummyT)
| repF => Const (Sign.full_bname thy ("rep_" ^ qty_name), dummyT)
end
fun absrep_fun flag ctxt (rty, qty) =
if rty = qty then mk_identity qty else
case (rty, qty) of
(Type ("fun", [ty1, ty2]), Type ("fun", [ty1', ty2'])) =>
let
val arg1 = absrep_fun (negF flag) ctxt (ty1, ty1')
val arg2 = absrep_fun flag ctxt (ty2, ty2')
in
list_comb (get_map ctxt "fun", [arg1, arg2])
end
| (Type (s, _), Type (s', [])) =>
if s = s'
then mk_identity qty
else get_absrep_const flag ctxt rty qty
| (Type (s, tys), Type (s', tys')) =>
let
val args = map (absrep_fun flag ctxt) (tys ~~ tys')
val result = list_comb (get_map ctxt s, args)
in
if s = s'
then result
else mk_compose flag (get_absrep_const flag ctxt rty qty, result)
end
| (TFree x, TFree x') =>
if x = x'
then mk_identity qty
else raise (LIFT_MATCH "absrep_fun (frees)")
| (TVar _, TVar _) => raise (LIFT_MATCH "absrep_fun (vars)")
| _ => raise (LIFT_MATCH "absrep_fun (default)")
fun absrep_fun_chk flag ctxt (rty, qty) =
absrep_fun flag ctxt (rty, qty)
|> Syntax.check_term ctxt
(* Regularizing an rtrm means:
- Quantifiers over types that need lifting are replaced
by bounded quantifiers, for example:
All P ----> All (Respects R) P
where the aggregate relation R is given by the rty and qty;
- Abstractions over types that need lifting are replaced
by bounded abstractions, for example:
%x. P ----> Ball (Respects R) %x. P
- Equalities over types that need lifting are replaced by
corresponding equivalence relations, for example:
A = B ----> R A B
or
A = B ----> (R ===> R) A B
for more complicated types of A and B
*)
(* instantiates TVars so that the term is of type ty *)
fun force_typ thy trm ty =
let
val trm_ty = fastype_of trm
val ty_inst = Sign.typ_match thy (trm_ty, ty) Vartab.empty
in
map_types (Envir.subst_type ty_inst) trm
end
(* builds the aggregate equivalence relation *)
(* that will be the argument of Respects *)
fun mk_resp_arg ctxt (rty, qty) =
let
val thy = ProofContext.theory_of ctxt
in
if rty = qty
then HOLogic.eq_const rty
else
case (rty, qty) of
(Type (s, tys), Type (s', tys')) =>
if s = s'
then
let
val exc = LIFT_MATCH ("mk_resp_arg (no relation map function found for type " ^ s ^ ")")
val relmap = #relmap (maps_lookup thy s) handle NotFound => raise exc
val args = map (mk_resp_arg ctxt) (tys ~~ tys')
in
list_comb (Const (relmap, dummyT), args)
end
else
let
val exc = LIFT_MATCH ("mk_resp_arg (no quotient found for type " ^ s ^ ")")
val equiv_rel = #equiv_rel (quotdata_lookup thy s') handle NotFound => raise exc
(* FIXME: check in this case that the rty and qty *)
(* FIXME: correspond to each other *)
(* we need to instantiate the TVars in the relation *)
val thy = ProofContext.theory_of ctxt
val forced_equiv_rel = force_typ thy equiv_rel (rty --> rty --> @{typ bool})
in
forced_equiv_rel
end
| _ => HOLogic.eq_const rty
(* FIXME: check that the types correspond to each other? *)
end
val mk_babs = Const (@{const_name Babs}, dummyT)
val mk_ball = Const (@{const_name Ball}, dummyT)
val mk_bex = Const (@{const_name Bex}, dummyT)
val mk_resp = Const (@{const_name Respects}, dummyT)
(* - applies f to the subterm of an abstraction, *)
(* otherwise to the given term, *)
(* - used by regularize, therefore abstracted *)
(* variables do not have to be treated specially *)
fun apply_subt f (trm1, trm2) =
case (trm1, trm2) of
(Abs (x, T, t), Abs (_ , _, t')) => Abs (x, T, f (t, t'))
| _ => f (trm1, trm2)
(* the major type of All and Ex quantifiers *)
fun qnt_typ ty = domain_type (domain_type ty)
(* produces a regularized version of rtrm *)
(* *)
(* - the result might contain dummyTs *)
(* *)
(* - for regularisation we do not need any *)
(* special treatment of bound variables *)
fun regularize_trm ctxt (rtrm, qtrm) =
case (rtrm, qtrm) of
(Abs (x, ty, t), Abs (_, ty', t')) =>
let
val subtrm = Abs(x, ty, regularize_trm ctxt (t, t'))
in
if ty = ty' then subtrm
else mk_babs $ (mk_resp $ mk_resp_arg ctxt (ty, ty')) $ subtrm
end
| (Const (@{const_name "All"}, ty) $ t, Const (@{const_name "All"}, ty') $ t') =>
let
val subtrm = apply_subt (regularize_trm ctxt) (t, t')
in
if ty = ty' then Const (@{const_name "All"}, ty) $ subtrm
else mk_ball $ (mk_resp $ mk_resp_arg ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
end
| (Const (@{const_name "Ex"}, ty) $ t, Const (@{const_name "Ex"}, ty') $ t') =>
let
val subtrm = apply_subt (regularize_trm ctxt) (t, t')
in
if ty = ty' then Const (@{const_name "Ex"}, ty) $ subtrm
else mk_bex $ (mk_resp $ mk_resp_arg ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
end
| (* equalities need to be replaced by appropriate equivalence relations *)
(Const (@{const_name "op ="}, ty), Const (@{const_name "op ="}, ty')) =>
if ty = ty' then rtrm
else mk_resp_arg ctxt (domain_type ty, domain_type ty')
| (* in this case we just check whether the given equivalence relation is correct *)
(rel, Const (@{const_name "op ="}, ty')) =>
let
val exc = LIFT_MATCH "regularise (relation mismatch)"
val rel_ty = fastype_of rel
val rel' = mk_resp_arg ctxt (domain_type rel_ty, domain_type ty')
in
if rel' aconv rel then rtrm else raise exc
end
| (_, Const _) =>
let
fun same_name (Const (s, T)) (Const (s', T')) = (s = s') (*andalso (T = T')*)
| same_name _ _ = false
(* TODO/FIXME: This test is not enough. *)
(* Why? *)
(* Because constants can have the same name but not be the same
constant. All overloaded constants have the same name but because
of different types they do differ.
This code will let one write a theorem where plus on nat is
matched to plus on int, even if the latter is defined differently.
This would result in hard to understand failures in injection and
cleaning. *)
(* cu: if I also test the type, then something else breaks *)
in
if same_name rtrm qtrm then rtrm
else
let
val thy = ProofContext.theory_of ctxt
val qtrm_str = Syntax.string_of_term ctxt qtrm
val exc1 = LIFT_MATCH ("regularize (constant " ^ qtrm_str ^ " not found)")
val exc2 = LIFT_MATCH ("regularize (constant " ^ qtrm_str ^ " mismatch)")
val rtrm' = #rconst (qconsts_lookup thy qtrm) handle NotFound => raise exc1
in
if Pattern.matches thy (rtrm', rtrm)
then rtrm else raise exc2
end
end
| (t1 $ t2, t1' $ t2') =>
(regularize_trm ctxt (t1, t1')) $ (regularize_trm ctxt (t2, t2'))
| (Bound i, Bound i') =>
if i = i' then rtrm
else raise (LIFT_MATCH "regularize (bounds mismatch)")
| _ =>
let
val rtrm_str = Syntax.string_of_term ctxt rtrm
val qtrm_str = Syntax.string_of_term ctxt qtrm
in
raise (LIFT_MATCH ("regularize failed (default: " ^ rtrm_str ^ "," ^ qtrm_str ^ ")"))
end
fun regularize_trm_chk ctxt (rtrm, qtrm) =
regularize_trm ctxt (rtrm, qtrm)
|> Syntax.check_term ctxt
(*
Injection of Rep/Abs means:
For abstractions
:
* If the type of the abstraction needs lifting, then we add Rep/Abs
around the abstraction; otherwise we leave it unchanged.
For applications:
* If the application involves a bounded quantifier, we recurse on
the second argument. If the application is a bounded abstraction,
we always put an Rep/Abs around it (since bounded abstractions
are assumed to always need lifting). Otherwise we recurse on both
arguments.
For constants:
* If the constant is (op =), we leave it always unchanged.
Otherwise the type of the constant needs lifting, we put
and Rep/Abs around it.
For free variables:
* We put aRep/Abs around it if the type needs lifting.
Vars case cannot occur.
*)
fun mk_repabs ctxt (T, T') trm =
absrep_fun repF ctxt (T, T') $ (absrep_fun absF ctxt (T, T') $ trm)
(* bound variables need to be treated properly, *)
(* as the type of subterms needs to be calculated *)
fun inj_repabs_trm ctxt (rtrm, qtrm) =
case (rtrm, qtrm) of
(Const (@{const_name "Ball"}, T) $ r $ t, Const (@{const_name "All"}, _) $ t') =>
Const (@{const_name "Ball"}, T) $ r $ (inj_repabs_trm ctxt (t, t'))
| (Const (@{const_name "Bex"}, T) $ r $ t, Const (@{const_name "Ex"}, _) $ t') =>
Const (@{const_name "Bex"}, T) $ r $ (inj_repabs_trm ctxt (t, t'))
| (Const (@{const_name "Babs"}, T) $ r $ t, t' as (Abs _)) =>
let
val rty = fastype_of rtrm
val qty = fastype_of qtrm
in
mk_repabs ctxt (rty, qty) (Const (@{const_name "Babs"}, T) $ r $ (inj_repabs_trm ctxt (t, t')))
end
| (Abs (x, T, t), Abs (x', T', t')) =>
let
val rty = fastype_of rtrm
val qty = fastype_of qtrm
val (y, s) = Term.dest_abs (x, T, t)
val (_, s') = Term.dest_abs (x', T', t')
val yvar = Free (y, T)
val result = Term.lambda_name (y, yvar) (inj_repabs_trm ctxt (s, s'))
in
if rty = qty then result
else mk_repabs ctxt (rty, qty) result
end
| (t $ s, t' $ s') =>
(inj_repabs_trm ctxt (t, t')) $ (inj_repabs_trm ctxt (s, s'))
| (Free (_, T), Free (_, T')) =>
if T = T' then rtrm
else mk_repabs ctxt (T, T') rtrm
| (_, Const (@{const_name "op ="}, _)) => rtrm
| (_, Const (_, T')) =>
let
val rty = fastype_of rtrm
in
if rty = T' then rtrm
else mk_repabs ctxt (rty, T') rtrm
end
| _ => raise (LIFT_MATCH "injection (default)")
fun inj_repabs_trm_chk ctxt (rtrm, qtrm) =
inj_repabs_trm ctxt (rtrm, qtrm)
|> Syntax.check_term ctxt
end; (* structure *)