FSet.thy
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Tue, 24 Nov 2009 16:20:34 +0100
changeset 367 d444389fe3f9
parent 364 4c455d58ac99
child 368 c5c49d240cde
permissions -rw-r--r--
The non-working procedure_tac.

theory FSet
imports QuotMain
begin

inductive
  list_eq (infix "\<approx>" 50)
where
  "a#b#xs \<approx> b#a#xs"
| "[] \<approx> []"
| "xs \<approx> ys \<Longrightarrow> ys \<approx> xs"
| "a#a#xs \<approx> a#xs"
| "xs \<approx> ys \<Longrightarrow> a#xs \<approx> a#ys"
| "\<lbrakk>xs1 \<approx> xs2; xs2 \<approx> xs3\<rbrakk> \<Longrightarrow> xs1 \<approx> xs3"

lemma list_eq_refl:
  shows "xs \<approx> xs"
  apply (induct xs)
   apply (auto intro: list_eq.intros)
  done

lemma equiv_list_eq:
  shows "EQUIV list_eq"
  unfolding EQUIV_REFL_SYM_TRANS REFL_def SYM_def TRANS_def
  apply(auto intro: list_eq.intros list_eq_refl)
  done

quotient fset = "'a list" / "list_eq"
  apply(rule equiv_list_eq)
  done

print_theorems

typ "'a fset"
thm "Rep_fset"
thm "ABS_fset_def"

quotient_def 
  EMPTY :: "'a fset"
where
  "EMPTY \<equiv> ([]::'a list)"

term Nil
term EMPTY
thm EMPTY_def

quotient_def 
  INSERT :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
where
  "INSERT \<equiv> op #"

term Cons
term INSERT
thm INSERT_def

quotient_def 
  FUNION :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
where
  "FUNION \<equiv> (op @)"

term append
term FUNION
thm FUNION_def

thm QUOTIENT_fset

thm QUOT_TYPE_I_fset.thm11


fun
  membship :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" (infix "memb" 100)
where
  m1: "(x memb []) = False"
| m2: "(x memb (y#xs)) = ((x=y) \<or> (x memb xs))"

fun
  card1 :: "'a list \<Rightarrow> nat"
where
  card1_nil: "(card1 []) = 0"
| card1_cons: "(card1 (x # xs)) = (if (x memb xs) then (card1 xs) else (Suc (card1 xs)))"

quotient_def 
  CARD :: "'a fset \<Rightarrow> nat"
where
  "CARD \<equiv> card1"

term card1
term CARD
thm CARD_def

(* text {*
 Maybe make_const_def should require a theorem that says that the particular lifted function
 respects the relation. With it such a definition would be impossible:
 make_const_def @{binding CARD} @{term "length"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}*)

lemma card1_0:
  fixes a :: "'a list"
  shows "(card1 a = 0) = (a = [])"
  by (induct a) auto

lemma not_mem_card1:
  fixes x :: "'a"
  fixes xs :: "'a list"
  shows "(~(x memb xs)) = (card1 (x # xs) = Suc (card1 xs))"
  by auto

lemma mem_cons:
  fixes x :: "'a"
  fixes xs :: "'a list"
  assumes a : "x memb xs"
  shows "x # xs \<approx> xs"
  using a by (induct xs) (auto intro: list_eq.intros )

lemma card1_suc:
  fixes xs :: "'a list"
  fixes n :: "nat"
  assumes c: "card1 xs = Suc n"
  shows "\<exists>a ys. ~(a memb ys) \<and> xs \<approx> (a # ys)"
  using c
apply(induct xs)
apply (metis Suc_neq_Zero card1_0)
apply (metis QUOT_TYPE_I_fset.R_trans card1_cons list_eq_refl mem_cons)
done

definition
  rsp_fold
where
  "rsp_fold f = ((!u v. (f u v = f v u)) \<and> (!u v w. ((f u (f v w) = f (f u v) w))))"

primrec
  fold1
where
  "fold1 f (g :: 'a \<Rightarrow> 'b) (z :: 'b) [] = z"
| "fold1 f g z (a # A) =
     (if rsp_fold f
     then (
       if (a memb A) then (fold1 f g z A) else (f (g a) (fold1 f g z A))
     ) else z)"

(* fold1_def is not usable, but: *)
thm fold1.simps

lemma fs1_strong_cases:
  fixes X :: "'a list"
  shows "(X = []) \<or> (\<exists>a. \<exists> Y. (~(a memb Y) \<and> (X \<approx> a # Y)))"
  apply (induct X)
  apply (simp)
  apply (metis QUOT_TYPE_I_fset.thm11 list_eq_refl mem_cons m1)
  done

quotient_def
  IN :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool"
where
  "IN \<equiv> membship"

term membship
term IN
thm IN_def

term fold1
quotient_def 
  FOLD :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b fset \<Rightarrow> 'a"
where
  "FOLD \<equiv> fold1"

term fold1
term fold
thm fold_def

quotient_def 
  fmap::"('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset"
where
  "fmap \<equiv> map"

term map
term fmap
thm fmap_def

ML {* prop_of @{thm fmap_def} *}

ML {* val defs = @{thms EMPTY_def IN_def FUNION_def CARD_def INSERT_def fmap_def FOLD_def} *}

lemma memb_rsp:
  fixes z
  assumes a: "list_eq x y"
  shows "(z memb x) = (z memb y)"
  using a by induct auto

lemma ho_memb_rsp:
  "(op = ===> (op \<approx> ===> op =)) (op memb) (op memb)"
  by (simp add: memb_rsp)

lemma card1_rsp:
  fixes a b :: "'a list"
  assumes e: "a \<approx> b"
  shows "card1 a = card1 b"
  using e by induct (simp_all add:memb_rsp)

lemma ho_card1_rsp: "(op \<approx> ===> op =) card1 card1"
  by (simp add: card1_rsp)

lemma cons_rsp:
  fixes z
  assumes a: "xs \<approx> ys"
  shows "(z # xs) \<approx> (z # ys)"
  using a by (rule list_eq.intros(5))

lemma ho_cons_rsp:
  "(op = ===> op \<approx> ===> op \<approx>) op # op #"
  by (simp add: cons_rsp)

lemma append_rsp_fst:
  assumes a : "list_eq l1 l2"
  shows "(l1 @ s) \<approx> (l2 @ s)"
  using a
  by (induct) (auto intro: list_eq.intros list_eq_refl)

lemma append_end:
  shows "(e # l) \<approx> (l @ [e])"
  apply (induct l)
  apply (auto intro: list_eq.intros list_eq_refl)
  done

lemma rev_rsp:
  shows "a \<approx> rev a"
  apply (induct a)
  apply simp
  apply (rule list_eq_refl)
  apply simp_all
  apply (rule list_eq.intros(6))
  prefer 2
  apply (rule append_rsp_fst)
  apply assumption
  apply (rule append_end)
  done

lemma append_sym_rsp:
  shows "(a @ b) \<approx> (b @ a)"
  apply (rule list_eq.intros(6))
  apply (rule append_rsp_fst)
  apply (rule rev_rsp)
  apply (rule list_eq.intros(6))
  apply (rule rev_rsp)
  apply (simp)
  apply (rule append_rsp_fst)
  apply (rule list_eq.intros(3))
  apply (rule rev_rsp)
  done

lemma append_rsp:
  assumes a : "list_eq l1 r1"
  assumes b : "list_eq l2 r2 "
  shows "(l1 @ l2) \<approx> (r1 @ r2)"
  apply (rule list_eq.intros(6))
  apply (rule append_rsp_fst)
  using a apply (assumption)
  apply (rule list_eq.intros(6))
  apply (rule append_sym_rsp)
  apply (rule list_eq.intros(6))
  apply (rule append_rsp_fst)
  using b apply (assumption)
  apply (rule append_sym_rsp)
  done

lemma ho_append_rsp:
  "(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
  by (simp add: append_rsp)

lemma map_rsp:
  assumes a: "a \<approx> b"
  shows "map f a \<approx> map f b"
  using a
  apply (induct)
  apply(auto intro: list_eq.intros)
  done

lemma ho_map_rsp:
  "(op = ===> op \<approx> ===> op \<approx>) map map"
  by (simp add: map_rsp)

lemma map_append:
  "(map f (a @ b)) \<approx>
  (map f a) @ (map f b)"
 by simp (rule list_eq_refl)

lemma ho_fold_rsp:
  "(op = ===> op = ===> op = ===> op \<approx> ===> op =) fold1 fold1"
  apply (auto simp add: FUN_REL_EQ)
  apply (case_tac "rsp_fold x")
  prefer 2
  apply (erule_tac list_eq.induct)
  apply (simp_all)
  apply (erule_tac list_eq.induct)
  apply (simp_all)
  apply (auto simp add: memb_rsp rsp_fold_def)
done

print_quotients


ML {* val qty = @{typ "'a fset"} *}
ML {* val rsp_thms =
  @{thms ho_memb_rsp ho_cons_rsp ho_card1_rsp ho_map_rsp ho_append_rsp ho_fold_rsp}
  @ @{thms ho_all_prs ho_ex_prs} *}

ML {* fun lift_thm_fset lthy t = lift_thm lthy qty "fset" rsp_thms defs t *}
ML {* fun lift_thm_g_fset lthy t g = lift_thm_goal lthy qty "fset" rsp_thms defs t g *}
ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "fset"; *}
ML {* val consts = lookup_quot_consts defs *}
ML {* fun lift_tac_fset lthy t = lift_tac lthy t rel_eqv rel_refl rty quot trans2 rsp_thms reps_same defs *}

lemma "IN x EMPTY = False"
by (tactic {* lift_tac_fset @{context} @{thm m1} 1 *})

lemma "IN x (INSERT y xa) = (x = y \<or> IN x xa)"
by (tactic {* lift_tac_fset @{context} @{thm m2} 1 *})

lemma "INSERT a (INSERT a x) = INSERT a x"
apply (tactic {* lift_tac_fset @{context} @{thm list_eq.intros(4)} 1 *})
done

lemma "x = xa \<Longrightarrow> INSERT a x = INSERT a xa"
apply (tactic {* lift_tac_fset @{context} @{thm list_eq.intros(5)} 1 *})
done

lemma "CARD x = Suc n \<Longrightarrow> (\<exists>a b. \<not> IN a b & x = INSERT a b)"
apply (tactic {* lift_tac_fset @{context} @{thm card1_suc} 1 *})
done

lemma "(\<not> IN x xa) = (CARD (INSERT x xa) = Suc (CARD xa))"
apply (tactic {* lift_tac_fset @{context} @{thm not_mem_card1} 1 *})
done

lemma "\<forall>f g z a x. FOLD f g (z::'b) (INSERT a x) =
  (if rsp_fold f then if IN a x then FOLD f g z x else f (g a) (FOLD f g z x) else z)"
apply (tactic {* lift_tac_fset @{context} @{thm fold1.simps(2)} 1 *})
done

(*
ML {*
fun lambda_prs_conv ctxt ctrm =
  case (Thm.term_of ctrm) of
    (@{term "op --->"} $ x $ y) $ (Abs (_, T, x)) =>
      let
        val lty = T;
        val rty = fastype_of x;
        val thy = ProofContext.theory_of ctxt;
        val (lcty, rcty) = (ctyp_of thy lty, ctyp_of thy rty)
        val inst = [SOME lcty, NONE, SOME rcty];
        val lpi = Drule.instantiate' inst [] thm;
 
      (Conv.all_conv ctrm)
  | _ $ _ => Conv.comb_conv (lambda_prs_conv ctxt) ctrm
  | Abs _ => Conv.abs_conv (fn (_, ctxt) => lambda_prs_conv ctxt) ctxt ctrm
  | _ => Conv.all_conv ctrm
*}


ML {*
fun lambda_prs_tac ctxt = CSUBGOAL (fn (goal, i) =>
  CONVERSION
    (Conv.params_conv ~1 (fn ctxt =>
       (Conv.prems_conv ~1 (lambda_prs_conv ctxt) then_conv
          Conv.concl_conv ~1 (lambda_prs_conv ctxt))) ctxt) i)
*}
*)

thm map_append
lemma "fmap f (FUNION (x::'b fset) (xa::'b fset)) = FUNION (fmap f x) (fmap f xa)"
apply(tactic {* procedure_tac @{thm map_append} @{context} 1 *})
apply(tactic {* prepare_tac 1 *})
thm map_append
apply (tactic {* lift_tac_fset @{context} @{thm map_append} 1 *})
done


lemma "\<lbrakk>P EMPTY; \<And>a x. P x \<Longrightarrow> P (INSERT a x)\<rbrakk> \<Longrightarrow> P l"
apply(tactic {* procedure_tac @{thm list.induct} @{context} 1 *})
apply(tactic {* regularize_tac @{context} rel_eqv rel_refl 1 *})
apply(tactic {* REPEAT_ALL_NEW (r_mk_comb_tac @{context} rty quot rel_refl trans2 rsp_thms) 1 *})
apply(tactic {* REPEAT_ALL_NEW (allex_prs_tac @{context} quot) 1 *})
thm LAMBDA_PRS
apply(tactic {* EqSubst.eqsubst_tac @{context} [0] @{thms LAMBDA_PRS} 1 *})

apply(tactic {*  (lambda_prs_tac @{context} quot) 1 *})

apply(tactic {* REPEAT_ALL_NEW (lambda_prs_tac @{context} quot) 1 *})

apply(tactic {* clean_tac @{context} quot defs reps_same 1 *})
apply (tactic {* lift_tac_fset @{context} @{thm list.induct} 1 *})
ML {* lift_thm_fset @{context} @{thm list.induct} *}
ML {* lift_thm_g_fset @{context} @{thm list.induct} @{term "\<lbrakk>P EMPTY; \<And>a x. P x \<Longrightarrow> P (INSERT a x)\<rbrakk> \<Longrightarrow> P l"} *}

lemma "FUNION (FUNION x xa) xb = FUNION x (FUNION xa xb)"
apply (tactic {* lift_tac_fset @{context} @{thm append_assoc} 1 *})
done

ML {* atomize_thm @{thm fold1.simps(2)} *}
(*ML {* lift_thm_g_fset @{context} @{thm fold1.simps(2)} @{term "FOLD f g (z::'b) (INSERT a x) =
    (if rsp_fold f then if IN a x then FOLD f g z x else f (g a) (FOLD f g z x) else z)"} *}*)



ML {* lift_thm_g_fset @{context} @{thm map_append} @{term "fmap f (FUNION (x::'b fset) (xa::'b fset)) = FUNION (fmap f x) (fmap f xa)"} *}


ML {* cterm_of @{theory} (atomize_goal @{theory} @{term "\<forall>x xa a. x = xa \<Longrightarrow> INSERT a x = INSERT a xa"}) *}


ML {* lift_thm_fset @{context} @{thm map_append} *}



apply(tactic {* procedure_tac @{thm m1} @{context} 1 *})
apply(tactic {* regularize_tac @{context} rel_eqv rel_refl 1 *})
apply(tactic {* REPEAT_ALL_NEW (r_mk_comb_tac @{context} rty quot rel_refl trans2 rsp_thms) 1 *})
apply(tactic {* clean_tac @{context} quot defs reps_same 1 *})
apply(tactic {* TRY' (REPEAT_ALL_NEW (allex_prs_tac @{context} quot)) 1 *})
apply(tactic {* TRY' (REPEAT_ALL_NEW (lambda_prs_tac @{context} quot)) 1 *})
ML_prf {* val lower = flat (map (add_lower_defs @{context}) defs) *}
apply(tactic {* REPEAT_ALL_NEW (EqSubst.eqsubst_tac @{context} [0] lower) 1*})
apply(tactic {* simp_tac (HOL_ss addsimps [reps_same]) 1 *})




(*ML {* lift_thm_fset @{context} @{thm neq_Nil_conv} *}*)

quotient_def
  fset_rec::"'a \<Rightarrow> ('b \<Rightarrow> 'b fset \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a"
where
  "fset_rec \<equiv> list_rec"

quotient_def
  fset_case::"'a \<Rightarrow> ('b \<Rightarrow> 'b fset \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a"
where
  "fset_case \<equiv> list_case"

(* Probably not true without additional assumptions about the function *)
lemma list_rec_rsp:
  "(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_rec list_rec"
  apply (auto simp add: FUN_REL_EQ)
  apply (erule_tac list_eq.induct)
  apply (simp_all)
  sorry

lemma list_case_rsp:
  "(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_case list_case"
  apply (auto simp add: FUN_REL_EQ)
  sorry


ML {* val rsp_thms = @{thms list_rec_rsp list_case_rsp} @ rsp_thms *}
ML {* val defs = @{thms fset_rec_def fset_case_def} @ defs *}

ML {* fun lift_thm_fset lthy t = lift_thm lthy qty "fset" rsp_thms defs t *}
ML {* fun lift_thm_g_fset lthy t g = lift_thm_goal lthy qty "fset" rsp_thms defs t g *}

thm list.recs(2)
ML {* lift_thm_fset @{context} @{thm list.recs(2)} *}
ML {* lift_thm_g_fset @{context} @{thm list.recs(2)} @{term "fset_rec (f1::'t) x (INSERT a xa) = x a xa (fset_rec f1 x xa)"} *}


ML {* val gl = @{term "fset_rec (f1::'t) x (INSERT a xa) = x a xa (fset_rec f1 x xa)"} *}
ML {* val t_a = atomize_thm @{thm list.recs(2)} *}
ML {* val qtrm = atomize_goal @{theory} gl *}
ML {* val rg = cterm_of @{theory}(Syntax.check_term @{context} (REGULARIZE_trm @{context} (prop_of t_a) qtrm)) *}
ML {* val rg2 = cterm_of @{theory}(my_reg @{context} rel rty (prop_of t_a)) *}

ML {* val t_r = regularize_goal @{context} t_a rel_eqv rel_refl qtrm *}
ML {* val t_r = regularize t_a rty rel rel_eqv rel_refl @{context} *}

ML {* val rg = cterm_of @{theory}(Syntax.check_term @{context} (inj_REPABS @{context} ((prop_of t_r), qtrm))) *}
ML {* val rg2 = cterm_of @{theory} (build_repabs_term @{context} t_r consts rty qty) *}
ML {* val t_t = repabs_goal @{context} t_r rty quot rel_refl trans2 rsp_thms qtrm *}
ML {* val t_t = repabs @{context} t_r consts rty qty quot rel_refl trans2 rsp_thms *}
ML {*
  val lthy = @{context}
  val (alls, exs) = findallex lthy rty qty (prop_of t_a);
  val allthms = map (make_allex_prs_thm lthy quot @{thm FORALL_PRS}) alls
  val exthms = map (make_allex_prs_thm lthy quot @{thm EXISTS_PRS}) exs
  val t_a = MetaSimplifier.rewrite_rule (allthms @ exthms) t_t
  val abs = findabs rty (prop_of t_a);
  val aps = findaps rty (prop_of t_a);
  val app_prs_thms = map (applic_prs lthy rty qty absrep) aps;
  val lam_prs_thms = map (make_simp_prs_thm lthy quot @{thm LAMBDA_PRS}) abs;
  val t_l = repeat_eqsubst_thm lthy (lam_prs_thms @ app_prs_thms) t_a;
  val defs_sym = flat (map (add_lower_defs lthy) defs);
  val defs_sym_eq = map (fn x => eq_reflection OF [x]) defs_sym;
  val t_id = simp_ids lthy t_l;
  val t_d0 = MetaSimplifier.rewrite_rule defs_sym_eq t_id;
  val t_d = repeat_eqsubst_thm lthy defs_sym t_d0;
  val t_r = MetaSimplifier.rewrite_rule [reps_same] t_d;
  val t_rv = ObjectLogic.rulify t_r

*}






ML {* map (lift_thm_fset @{context}) @{thms list.cases} *}




ML {* atomize_thm @{thm m1} *}
ML {* cterm_of @{theory} (atomize_goal @{theory} @{term "IN x EMPTY = False"}) *}
ML {* lift_thm_fset @{context} @{thm m1} *}
(* ML {* lift_thm_g_fset @{context} @{thm m1} @{term "IN x EMPTY = False"}) *} *)


lemma list_induct_part:
  assumes a: "P (x :: 'a list) ([] :: 'a list)"
  assumes b: "\<And>e t. P x t \<Longrightarrow> P x (e # t)"
  shows "P x l"
  apply (rule_tac P="P x" in list.induct)
  apply (rule a)
  apply (rule b)
  apply (assumption)
  done


(* Construction site starts here *)


ML {* val consts = lookup_quot_consts defs *}
ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "fset" *}

thm list.recs(2)
ML {* val t_a = atomize_thm @{thm list_induct_part} *}


(* prove {* build_regularize_goal t_a rty rel @{context}  *}
 ML_prf {*  fun tac ctxt = FIRST' [
      rtac rel_refl,
      atac,
      rtac @{thm universal_twice},
      (rtac @{thm impI} THEN' atac),
      rtac @{thm implication_twice},
      //comented out  rtac @{thm equality_twice}, //
      EqSubst.eqsubst_tac ctxt [0]
        [(@{thm equiv_res_forall} OF [rel_eqv]),
         (@{thm equiv_res_exists} OF [rel_eqv])],
      (rtac @{thm impI} THEN' (asm_full_simp_tac (Simplifier.context ctxt HOL_ss)) THEN' rtac rel_refl),
      (rtac @{thm RIGHT_RES_FORALL_REGULAR})
     ]; *}
  apply (atomize(full))
  apply (tactic {* REPEAT_ALL_NEW (tac @{context}) 1 *})
  done  *)
ML {* val t_r = regularize t_a rty rel rel_eqv rel_refl @{context} *}
ML {*
  val rt = build_repabs_term @{context} t_r consts rty qty
  val rg = Logic.mk_equals ((Thm.prop_of t_r), rt);
*}
prove {* Syntax.check_term @{context} rg *}
ML_prf {* fun r_mk_comb_tac_fset lthy = r_mk_comb_tac lthy rty quot rel_refl trans2 rsp_thms *}
apply(atomize(full))
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
done
ML {*
val t_t = repabs @{context} t_r consts rty qty quot rel_refl trans2 rsp_thms
*}

ML {* val abs = findabs rty (prop_of (t_a)) *}
ML {* val aps = findaps rty (prop_of (t_a)) *}
ML {* val lam_prs_thms = map (make_simp_prs_thm @{context} quot @{thm LAMBDA_PRS}) abs *}
ML {* val app_prs_thms = map (applic_prs @{context} rty qty absrep) aps *}
ML {* val lam_prs_thms = map Thm.varifyT lam_prs_thms *}
ML {* t_t *}
ML {* val (alls, exs) = findallex @{context} rty qty (prop_of t_a); *}
ML {* val allthms = map (make_allex_prs_thm @{context} quot @{thm FORALL_PRS}) alls *}
ML {* val t_l0 = repeat_eqsubst_thm @{context} (app_prs_thms) t_t *}
ML app_prs_thms
ML {* val t_l = repeat_eqsubst_thm @{context} (lam_prs_thms) t_l0 *}
ML lam_prs_thms
ML {* val t_id = simp_ids @{context} t_l *}
thm INSERT_def
ML {* val defs_sym = flat (map (add_lower_defs @{context}) defs) *}
ML {* val t_d = repeat_eqsubst_thm @{context} defs_sym t_id *}
ML allthms
thm FORALL_PRS
ML {* val t_al = MetaSimplifier.rewrite_rule (allthms) t_d *}
ML {* val t_s = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} t_al *}
ML {* ObjectLogic.rulify t_s *}

ML {* val gl = @{term "P (x :: 'a list) (EMPTY :: 'a fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"} *}
ML {* val gla = atomize_goal @{theory} gl *}

prove t_r: {* mk_REGULARIZE_goal @{context} (prop_of t_a) gla *}

ML_prf {*  fun tac ctxt = FIRST' [
      rtac rel_refl,
      atac,
      rtac @{thm universal_twice},
      (rtac @{thm impI} THEN' atac),
      rtac @{thm implication_twice},
      (*rtac @{thm equality_twice},*)
      EqSubst.eqsubst_tac ctxt [0]
        [(@{thm equiv_res_forall} OF [rel_eqv]),
         (@{thm equiv_res_exists} OF [rel_eqv])],
      (rtac @{thm impI} THEN' (asm_full_simp_tac (Simplifier.context ctxt HOL_ss)) THEN' rtac rel_refl),
      (rtac @{thm RIGHT_RES_FORALL_REGULAR})
     ]; *}

  apply (atomize(full))
  apply (tactic {* REPEAT_ALL_NEW (tac @{context}) 1 *})
  done

ML {* val t_r = @{thm t_r} OF [t_a] *}

ML {* val ttt = mk_inj_REPABS_goal @{context} (prop_of t_r, gla) *}
ML {* val si = simp_ids_trm (cterm_of @{theory} ttt) *}
prove t_t: {* term_of si *}
ML_prf {* fun r_mk_comb_tac_fset lthy = r_mk_comb_tac lthy rty quot rel_refl trans2 rsp_thms *}
apply(atomize(full))
apply (tactic {* (APPLY_RSP_TAC rty @{context}) 1 *})
apply (rule FUN_QUOTIENT)
apply (rule FUN_QUOTIENT)
apply (rule IDENTITY_QUOTIENT)
apply (rule FUN_QUOTIENT)
apply (rule QUOTIENT_fset)
apply (rule IDENTITY_QUOTIENT)
apply (rule IDENTITY_QUOTIENT)
apply (rule IDENTITY_QUOTIENT)
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (APPLY_RSP_TAC rty @{context}) 1 *})
apply (rule IDENTITY_QUOTIENT)
apply (rule IDENTITY_QUOTIENT)
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (APPLY_RSP_TAC rty @{context}) 1 *})
apply (rule IDENTITY_QUOTIENT)
apply (rule FUN_QUOTIENT)
apply (rule QUOTIENT_fset)
apply (rule IDENTITY_QUOTIENT)
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* instantiate_tac @{thm APPLY_RSP2} @{context} 1 *})
apply (tactic {* instantiate_tac @{thm APPLY_RSP2} @{context} 1 *})
apply (tactic {* (instantiate_tac @{thm REP_ABS_RSP(1)} @{context} THEN' (RANGE [quotient_tac quot])) 1 *})
apply assumption
apply (rule refl)
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* instantiate_tac @{thm APPLY_RSP2} @{context} 1 *})
apply (tactic {* instantiate_tac @{thm APPLY_RSP2} @{context} 1 *})
apply (tactic {* (instantiate_tac @{thm REP_ABS_RSP(1)} @{context} THEN' (RANGE [quotient_tac quot])) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* instantiate_tac @{thm APPLY_RSP2} @{context} 1 *})
apply (tactic {* (instantiate_tac @{thm REP_ABS_RSP(1)} @{context} THEN' (RANGE [quotient_tac quot])) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
apply (tactic {* (r_mk_comb_tac_fset @{context}) 1 *})
done

thm t_t
ML {* val t_t = @{thm Pure.equal_elim_rule1} OF [@{thm t_t}, t_r] *}
ML {* val t_l = repeat_eqsubst_thm @{context} (lam_prs_thms) t_t *}
ML {* val t_d = repeat_eqsubst_thm @{context} defs_sym t_l *}
ML {* val t_al = MetaSimplifier.rewrite_rule (allthms) t_d *}
ML {* val t_s = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} t_al *}


ML {*
  fun lift_thm_fset_note name thm lthy =
    let
      val lifted_thm = lift_thm_fset lthy thm;
      val (_, lthy2) = note (name, lifted_thm) lthy;
    in
      lthy2
    end;
*}

local_setup {*
  lift_thm_fset_note @{binding "m1l"} @{thm m1} #>
  lift_thm_fset_note @{binding "m2l"} @{thm m2} #>
  lift_thm_fset_note @{binding "leqi4l"} @{thm list_eq.intros(4)} #>
  lift_thm_fset_note @{binding "leqi5l"} @{thm list_eq.intros(5)}
*}
thm m1l
thm m2l
thm leqi4l
thm leqi5l

end