(* Title: nominal_dt_rawfuns.ML
Author: Cezary Kaliszyk
Author: Christian Urban
Definitions of the raw fv and fv_bn functions
*)
signature NOMINAL_DT_RAWFUNS =
sig
(* info of raw datatypes *)
type dt_info = string list * binding * mixfix * ((binding * typ list * mixfix) list) list
(* info of raw binding functions *)
type bn_info = (term * int * (int * term option) list list) list
(* binding modes and binding clauses *)
datatype bmode = Lst | Res | Set
datatype bclause = BC of bmode * (term option * int) list * int list
val is_atom: Proof.context -> typ -> bool
val is_atom_set: Proof.context -> typ -> bool
val is_atom_fset: Proof.context -> typ -> bool
val is_atom_list: Proof.context -> typ -> bool
val mk_atom_set: term -> term
val mk_atom_fset: term -> term
val setify: Proof.context -> term -> term
val listify: Proof.context -> term -> term
(* TODO: should be here
val define_raw_bns: string list -> dt_info -> (binding * typ option * mixfix) list ->
(Attrib.binding * term) list -> thm list -> thm list -> local_theory ->
(term list * thm list * bn_info * thm list * local_theory) *)
val define_raw_fvs: string list -> typ list -> cns_info list -> bn_info -> bclause list list list ->
thm list -> thm list -> Proof.context -> term list * term list * thm list * thm list * local_theory
val raw_prove_eqvt: term list -> thm list -> thm list -> Proof.context -> thm list
end
structure Nominal_Dt_RawFuns: NOMINAL_DT_RAWFUNS =
struct
(* string list - type variables of a datatype
binding - name of the datatype
mixfix - its mixfix
(binding * typ list * mixfix) list - datatype constructors of the type
*)
type dt_info = string list * binding * mixfix * ((binding * typ list * mixfix) list) list
(* term - is constant of the bn-function
int - is datatype number over which the bn-function is defined
int * term option - is number of the corresponding argument with possibly
recursive call with bn-function term
*)
type bn_info = (term * int * (int * term option) list list) list
datatype bmode = Lst | Res | Set
datatype bclause = BC of bmode * (term option * int) list * int list
fun lookup xs x = the (AList.lookup (op=) xs x)
(* testing for concrete atom types *)
fun is_atom ctxt ty =
Sign.of_sort (ProofContext.theory_of ctxt) (ty, @{sort at_base})
fun is_atom_set ctxt (Type ("fun", [t, @{typ bool}])) = is_atom ctxt t
| is_atom_set _ _ = false;
fun is_atom_fset ctxt (Type (@{type_name "fset"}, [t])) = is_atom ctxt t
| is_atom_fset _ _ = false;
fun is_atom_list ctxt (Type (@{type_name "list"}, [t])) = is_atom ctxt t
| is_atom_list _ _ = false
(* functions for producing sets, fsets and lists of general atom type
out from concrete atom types *)
fun mk_atom_set t =
let
val ty = fastype_of t;
val atom_ty = HOLogic.dest_setT ty --> @{typ "atom"};
val img_ty = atom_ty --> ty --> @{typ "atom set"};
in
Const (@{const_name image}, img_ty) $ mk_atom_ty atom_ty t
end
fun dest_fsetT (Type (@{type_name fset}, [T])) = T
| dest_fsetT T = raise TYPE ("dest_fsetT: fset type expected", [T], []);
fun mk_atom_fset t =
let
val ty = fastype_of t;
val atom_ty = dest_fsetT ty --> @{typ "atom"};
val fmap_ty = atom_ty --> ty --> @{typ "atom fset"};
val fset_to_set = @{term "fset_to_set :: atom fset => atom set"}
in
fset_to_set $ (Const (@{const_name fmap}, fmap_ty) $ Const (@{const_name atom}, atom_ty) $ t)
end
fun mk_atom_list t =
let
val ty = fastype_of t;
val atom_ty = dest_listT ty --> @{typ atom};
val map_ty = atom_ty --> ty --> @{typ "atom list"};
in
Const (@{const_name map}, map_ty) $ mk_atom_ty atom_ty t
end
(* functions that coerces singletons, sets and fsets of concrete atoms
into sets of general atoms *)
fun setify ctxt t =
let
val ty = fastype_of t;
in
if is_atom ctxt ty
then HOLogic.mk_set @{typ atom} [mk_atom t]
else if is_atom_set ctxt ty
then mk_atom_set t
else if is_atom_fset ctxt ty
then mk_atom_fset t
else raise TERM ("setify", [t])
end
(* functions that coerces singletons and lists of concrete atoms
into lists of general atoms *)
fun listify ctxt t =
let
val ty = fastype_of t;
in
if is_atom ctxt ty
then HOLogic.mk_list @{typ atom} [mk_atom t]
else if is_atom_list ctxt ty
then mk_atom_set t
else raise TERM ("listify", [t])
end
(* coerces a list into a set *)
fun to_set t =
if fastype_of t = @{typ "atom list"}
then @{term "set::atom list => atom set"} $ t
else t
(** functions that construct the equations for fv and fv_bn **)
fun mk_fv_rhs lthy fv_map fv_bn_map args (BC (_, binders, bodies)) =
let
fun mk_fv_body fv_map args i =
let
val arg = nth args i
val ty = fastype_of arg
in
case AList.lookup (op=) fv_map ty of
NONE => mk_supp arg
| SOME fv => fv $ arg
end
fun mk_fv_binder lthy fv_bn_map args (bn_option, i) =
let
val arg = nth args i
in
case bn_option of
NONE => (setify lthy arg, @{term "{}::atom set"})
| SOME bn => (to_set (bn $ arg),
if member (op=) bodies i then @{term "{}::atom set"}
else lookup fv_bn_map bn $ arg)
end
val t1 = map (mk_fv_body fv_map args) bodies
val (t2, t3) = split_list (map (mk_fv_binder lthy fv_bn_map args) binders)
in
fold_union (mk_diff (fold_union t1, fold_union t2)::t3)
end
(* in case of fv_bn we have to treat the case special, where an
"empty" binding clause is given *)
fun mk_fv_bn_rhs lthy fv_map fv_bn_map bn_args args bclause =
let
fun mk_fv_bn_body fv_map fv_bn_map bn_args args i =
let
val arg = nth args i
val ty = fastype_of arg
in
case AList.lookup (op=) bn_args i of
NONE => (case (AList.lookup (op=) fv_map ty) of
NONE => mk_supp arg
| SOME fv => fv $ arg)
| SOME (NONE) => @{term "{}::atom set"}
| SOME (SOME bn) => lookup fv_bn_map bn $ arg
end
in
case bclause of
BC (_, [], bodies) => fold_union (map (mk_fv_bn_body fv_map fv_bn_map bn_args args) bodies)
| _ => mk_fv_rhs lthy fv_map fv_bn_map args bclause
end
fun mk_fv_eq lthy fv_map fv_bn_map (constr, ty, arg_tys, _) bclauses =
let
val arg_names = Datatype_Prop.make_tnames arg_tys
val args = map Free (arg_names ~~ arg_tys)
val fv = lookup fv_map ty
val lhs = fv $ list_comb (constr, args)
val rhs_trms = map (mk_fv_rhs lthy fv_map fv_bn_map args) bclauses
val rhs = fold_union rhs_trms
in
HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
end
fun mk_fv_bn_eq lthy bn_trm fv_map fv_bn_map (bn_args, (constr, _, arg_tys, _)) bclauses =
let
val arg_names = Datatype_Prop.make_tnames arg_tys
val args = map Free (arg_names ~~ arg_tys)
val fv_bn = lookup fv_bn_map bn_trm
val lhs = fv_bn $ list_comb (constr, args)
val rhs_trms = map (mk_fv_bn_rhs lthy fv_map fv_bn_map bn_args args) bclauses
val rhs = fold_union rhs_trms
in
HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
end
fun mk_fv_bn_eqs lthy fv_map fv_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) =
let
val nth_constrs_info = nth constrs_info bn_n
val nth_bclausess = nth bclausesss bn_n
in
map2 (mk_fv_bn_eq lthy bn_trm fv_map fv_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess
end
fun define_raw_fvs raw_full_ty_names raw_tys cns_info bn_info bclausesss constr_thms size_simps lthy =
let
val fv_names = map (prefix "fv_" o Long_Name.base_name) raw_full_ty_names
val fv_tys = map (fn ty => ty --> @{typ "atom set"}) raw_tys
val fv_frees = map Free (fv_names ~~ fv_tys);
val fv_map = raw_tys ~~ fv_frees
val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
val fv_bn_names = map (prefix "fv_") bn_names
val fv_bn_arg_tys = map (nth raw_tys) bn_tys
val fv_bn_tys = map (fn ty => ty --> @{typ "atom set"}) fv_bn_arg_tys
val fv_bn_frees = map Free (fv_bn_names ~~ fv_bn_tys)
val fv_bn_map = bns ~~ fv_bn_frees
val fv_eqs = map2 (map2 (mk_fv_eq lthy fv_map fv_bn_map)) cns_info bclausesss
val fv_bn_eqs = map (mk_fv_bn_eqs lthy fv_map fv_bn_map cns_info bclausesss) bn_info
val all_fun_names = map (fn s => (Binding.name s, NONE, NoSyn)) (fv_names @ fv_bn_names)
val all_fun_eqs = map (pair Attrib.empty_binding) (flat fv_eqs @ flat fv_bn_eqs)
val (_, lthy') = Function.add_function all_fun_names all_fun_eqs
Function_Common.default_config (pat_completeness_simp constr_thms) lthy
val (info, lthy'') = prove_termination size_simps (Local_Theory.restore lthy')
val {fs, simps, inducts, ...} = info;
val morphism = ProofContext.export_morphism lthy'' lthy
val simps_exp = map (Morphism.thm morphism) (the simps)
val inducts_exp = map (Morphism.thm morphism) (the inducts)
val (fvs', fv_bns') = chop (length fv_frees) fs
in
(fvs', fv_bns', simps_exp, inducts_exp, lthy'')
end
(** equivarance proofs **)
val eqvt_apply_sym = @{thm eqvt_apply[symmetric]}
fun subproof_tac const_names simps =
SUBPROOF (fn {prems, context, ...} =>
HEADGOAL
(simp_tac (HOL_basic_ss addsimps simps)
THEN' Nominal_Permeq.eqvt_tac context [] const_names
THEN' simp_tac (HOL_basic_ss addsimps (prems @ [eqvt_apply_sym]))))
fun prove_eqvt_tac insts ind_thms const_names simps ctxt =
HEADGOAL
(Object_Logic.full_atomize_tac
THEN' (DETERM o (InductTacs.induct_rules_tac ctxt insts ind_thms))
THEN_ALL_NEW subproof_tac const_names simps ctxt)
fun mk_eqvt_goal pi const arg =
let
val lhs = mk_perm pi (const $ arg)
val rhs = const $ (mk_perm pi arg)
in
HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
end
fun raw_prove_eqvt consts ind_thms simps ctxt =
if null consts then []
else
let
val ([p], ctxt') = Variable.variant_fixes ["p"] ctxt
val p = Free (p, @{typ perm})
val arg_tys =
consts
|> map fastype_of
|> map domain_type
val (arg_names, ctxt'') =
Variable.variant_fixes (Datatype_Prop.make_tnames arg_tys) ctxt'
val args = map Free (arg_names ~~ arg_tys)
val goals = map2 (mk_eqvt_goal p) consts args
val insts = map (single o SOME) arg_names
val const_names = map (fst o dest_Const) consts
in
Goal.prove_multi ctxt'' [] [] goals (fn {context, ...} =>
prove_eqvt_tac insts ind_thms const_names simps context)
|> ProofContext.export ctxt'' ctxt
end
end (* structure *)