theory BetaCR+ −
imports CR+ −
begin+ −
+ −
(* TODO1: Does not work:*)+ −
+ −
(* equivariance beta_star *)+ −
+ −
(* proved manually below. *)+ −
+ −
lemma eqvt_helper: "x1 \<longrightarrow>b* x2 \<Longrightarrow> (p \<bullet> x1) \<longrightarrow>b* (p \<bullet> x2)"+ −
by (erule beta_star.induct)+ −
(metis beta.eqvt bs2 bs1)++ −
+ −
lemma [eqvt]: "p \<bullet> (x1 \<longrightarrow>b* x2) = ((p \<bullet> x1) \<longrightarrow>b* (p \<bullet> x2))"+ −
apply rule+ −
apply (drule permute_boolE)+ −
apply (erule eqvt_helper)+ −
apply (intro permute_boolI)+ −
apply (drule_tac p="-p" in eqvt_helper)+ −
by simp+ −
+ −
definition+ −
equ :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<approx> _")+ −
where+ −
"t \<approx> s \<longleftrightarrow> (\<exists>r. t \<longrightarrow>b* r \<and> s \<longrightarrow>b* r)"+ −
+ −
lemma equ_refl:+ −
shows "t \<approx> t"+ −
unfolding equ_def by auto+ −
+ −
lemma equ_sym:+ −
assumes "t \<approx> s"+ −
shows "s \<approx> t"+ −
using assms unfolding equ_def+ −
by auto+ −
+ −
lemma equ_trans:+ −
assumes "A \<approx> B" "B \<approx> C"+ −
shows "A \<approx> C"+ −
using assms unfolding equ_def+ −
proof (elim exE conjE)+ −
fix D E+ −
assume a: "A \<longrightarrow>b* D" "B \<longrightarrow>b* D" "B \<longrightarrow>b* E" "C \<longrightarrow>b* E"+ −
then obtain F where "D \<longrightarrow>b* F" "E \<longrightarrow>b* F" using CR_for_Beta_star by blast+ −
then have "A \<longrightarrow>b* F \<and> C \<longrightarrow>b* F" using a bs3 by blast+ −
then show "\<exists>F. A \<longrightarrow>b* F \<and> C \<longrightarrow>b* F" by blast+ −
qed+ −
+ −
lemma App_beta: "A \<longrightarrow>b* B \<Longrightarrow> C \<longrightarrow>b* D \<Longrightarrow> App A C \<longrightarrow>b* App B D"+ −
apply (erule beta_star.induct)+ −
apply auto+ −
apply (erule beta_star.induct)+ −
apply auto+ −
done+ −
+ −
lemma Lam_beta: "A \<longrightarrow>b* B \<Longrightarrow> Lam [x]. A \<longrightarrow>b* Lam [x]. B"+ −
by (erule beta_star.induct) auto+ −
+ −
lemma Lam_rsp: "A \<approx> B \<Longrightarrow> Lam [x]. A \<approx> Lam [x]. B"+ −
unfolding equ_def+ −
apply auto+ −
apply (rule_tac x="Lam [x]. r" in exI)+ −
apply (auto simp add: Lam_beta)+ −
done+ −
+ −
lemma [quot_respect]:+ −
shows "(op = ===> equ) Var Var"+ −
and "(equ ===> equ ===> equ) App App"+ −
and "(op = ===> equ ===> equ) CR.Lam CR.Lam"+ −
unfolding fun_rel_def equ_def+ −
apply auto+ −
apply (rule_tac x="App r ra" in exI)+ −
apply (auto simp add: App_beta)+ −
apply (rule_tac x="Lam [x]. r" in exI)+ −
apply (auto simp add: Lam_beta)+ −
done+ −
+ −
lemma beta_subst1_pre: "B \<longrightarrow>b C \<Longrightarrow> A [x ::= B] \<longrightarrow>b* A [x ::= C]"+ −
by (nominal_induct A avoiding: x B C rule: lam.strong_induct)+ −
(auto simp add: App_beta Lam_beta)+ −
+ −
lemma beta_subst1: "B \<longrightarrow>b* C \<Longrightarrow> A [x ::= B] \<longrightarrow>b* A [x ::= C]"+ −
apply (erule beta_star.induct)+ −
apply auto+ −
apply (subgoal_tac "A [x ::= M2] \<longrightarrow>b* A [x ::= M3]")+ −
apply (rotate_tac 1)+ −
apply (erule bs3)+ −
apply assumption+ −
apply (simp add: beta_subst1_pre)+ −
done+ −
+ −
lemma beta_subst2_pre:+ −
assumes "A \<longrightarrow>b B" shows "A [x ::= C] \<longrightarrow>b* B [x ::= C]"+ −
using assms+ −
apply (nominal_induct avoiding: x C rule: beta.strong_induct)+ −
apply (auto simp add: App_beta fresh_star_def fresh_Pair Lam_beta)[3]+ −
apply (subst substitution_lemma)+ −
apply (auto simp add: fresh_star_def fresh_Pair fresh_at_base)[2]+ −
apply (auto simp add: fresh_star_def fresh_Pair)+ −
apply (rule beta_star.intros)+ −
defer+ −
apply (subst beta.intros)+ −
apply (auto simp add: fresh_fact)+ −
done+ −
+ −
lemma beta_subst2: "A \<longrightarrow>b* B \<Longrightarrow> A [x ::= C] \<longrightarrow>b* B [x ::= C]"+ −
apply (erule beta_star.induct)+ −
apply auto+ −
apply (subgoal_tac "M2[x ::= C] \<longrightarrow>b* M3[x ::= C]")+ −
apply (rotate_tac 1)+ −
apply (erule bs3)+ −
apply assumption+ −
apply (simp add: beta_subst2_pre)+ −
done+ −
+ −
lemma beta_subst: "A \<longrightarrow>b* B \<Longrightarrow> C \<longrightarrow>b* D \<Longrightarrow> A [x ::= C] \<longrightarrow>b* B [x ::= D]"+ −
using beta_subst1 beta_subst2 bs3 by metis+ −
+ −
lemma subst_rsp_pre:+ −
"x \<approx> y \<Longrightarrow> xb \<approx> ya \<Longrightarrow> x [xa ::= xb] \<approx> y [xa ::= ya]"+ −
unfolding equ_def+ −
apply auto+ −
apply (rule_tac x="r [xa ::= ra]" in exI)+ −
apply (simp add: beta_subst)+ −
done+ −
+ −
lemma [quot_respect]:+ −
shows "(equ ===> op = ===> equ ===> equ) subst subst"+ −
unfolding fun_rel_def by (auto simp add: subst_rsp_pre)+ −
+ −
lemma [quot_respect]:+ −
shows "(op = ===> equ ===> equ) permute permute"+ −
unfolding fun_rel_def equ_def+ −
apply (auto intro: eqvts)+ −
apply (rule_tac x="x \<bullet> r" in exI)+ −
using eqvts(1) permute_boolI by metis+ −
+ −
quotient_type qlam = lam / equ+ −
by (auto intro!: equivpI reflpI sympI transpI simp add: equ_refl equ_sym)+ −
(erule equ_trans, assumption)+ −
+ −
quotient_definition "QVar::name \<Rightarrow> qlam" is Var+ −
quotient_definition "QApp::qlam \<Rightarrow> qlam \<Rightarrow> qlam" is App+ −
quotient_definition QLam ("QLam [_]._")+ −
where "QLam::name \<Rightarrow> qlam \<Rightarrow> qlam" is CR.Lam+ −
+ −
lemmas qlam_strong_induct = lam.strong_induct[quot_lifted]+ −
lemmas qlam_induct = lam.induct[quot_lifted]+ −
+ −
instantiation qlam :: pt+ −
begin+ −
+ −
quotient_definition "permute_qlam::perm \<Rightarrow> qlam \<Rightarrow> qlam" + −
is "permute::perm \<Rightarrow> lam \<Rightarrow> lam"+ −
+ −
instance+ −
apply default+ −
apply(descending)+ −
apply(simp)+ −
apply(rule equ_refl)+ −
apply(descending)+ −
apply(simp)+ −
apply(rule equ_refl)+ −
done+ −
+ −
end+ −
+ −
lemma qlam_perm[simp, eqvt]:+ −
shows "p \<bullet> (QVar x) = QVar (p \<bullet> x)"+ −
and "p \<bullet> (QApp t s) = QApp (p \<bullet> t) (p \<bullet> s)"+ −
and "p \<bullet> (QLam [x].t) = QLam [p \<bullet> x].(p \<bullet> t)"+ −
by(descending, simp add: equ_refl)++ −
+ −
lemma qlam_supports:+ −
shows "{atom x} supports (QVar x)"+ −
and "supp (t, s) supports (QApp t s)"+ −
and "supp (x, t) supports (QLam [x].t)"+ −
unfolding supports_def fresh_def[symmetric]+ −
by (auto simp add: swap_fresh_fresh)+ −
+ −
lemma qlam_fs:+ −
fixes t::"qlam"+ −
shows "finite (supp t)"+ −
apply(induct t rule: qlam_induct)+ −
apply(rule supports_finite)+ −
apply(rule qlam_supports)+ −
apply(simp)+ −
apply(rule supports_finite)+ −
apply(rule qlam_supports)+ −
apply(simp add: supp_Pair)+ −
apply(rule supports_finite)+ −
apply(rule qlam_supports)+ −
apply(simp add: supp_Pair finite_supp)+ −
done+ −
+ −
instantiation qlam :: fs+ −
begin+ −
+ −
instance+ −
apply(default)+ −
apply(rule qlam_fs)+ −
done+ −
+ −
end+ −
+ −
quotient_definition subst_qlam ("_[_ ::q= _]")+ −
where "subst_qlam::qlam \<Rightarrow> name \<Rightarrow> qlam \<Rightarrow> qlam" is subst + −
+ −
definition+ −
"Supp t = \<Inter>{supp s | s. s \<approx> t}"+ −
+ −
lemma Supp_rsp:+ −
"a \<approx> b \<Longrightarrow> Supp a = Supp b"+ −
unfolding Supp_def+ −
apply(rule_tac f="Inter" in arg_cong)+ −
apply(auto)+ −
apply (metis equ_trans)+ −
by (metis equivp_def qlam_equivp)+ −
+ −
lemma [quot_respect]:+ −
shows "(equ ===> op=) Supp Supp"+ −
unfolding fun_rel_def by (auto simp add: Supp_rsp)+ −
+ −
quotient_definition "supp_qlam::qlam \<Rightarrow> atom set" + −
is "Supp::lam \<Rightarrow> atom set"+ −
+ −
lemma Supp_supp:+ −
"Supp t \<subseteq> supp t"+ −
unfolding Supp_def+ −
apply(auto)+ −
apply(drule_tac x="supp t" in spec)+ −
apply(auto simp add: equ_refl)+ −
done+ −
+ −
lemma supp_subst:+ −
shows "supp (t[x ::= s]) \<subseteq> (supp t - {atom x}) \<union> supp s"+ −
by (induct t x s rule: subst.induct) (auto simp add: lam.supp supp_at_base)+ −
+ −
lemma supp_beta: "x \<longrightarrow>b r \<Longrightarrow> supp r \<subseteq> supp x"+ −
apply (induct rule: beta.induct)+ −
apply (simp_all add: lam.supp)+ −
apply blast++ −
using supp_subst by blast+ −
+ −
lemma supp_beta_star: "x \<longrightarrow>b* r \<Longrightarrow> supp r \<subseteq> supp x"+ −
apply (erule beta_star.induct)+ −
apply auto+ −
using supp_beta by blast+ −
+ −
lemma supp_equ: "x \<approx> y \<Longrightarrow> \<exists>z. z \<approx> x \<and> supp z \<subseteq> supp x \<inter> supp y"+ −
unfolding equ_def+ −
apply (simp (no_asm) only: equ_def[symmetric])+ −
apply (elim exE)+ −
apply (rule_tac x=r in exI)+ −
apply rule+ −
apply (metis bs1 equ_def)+ −
using supp_beta_star by blast+ −
+ −
lemma supp_psubset: "Supp x \<subset> supp x \<Longrightarrow> \<exists>t. t \<approx> x \<and> supp t \<subset> supp x"+ −
proof -+ −
assume "Supp x \<subset> supp x"+ −
then obtain a where "a \<in> supp x" "a \<notin> Supp x" by blast+ −
then obtain y where nin: "y \<approx> x" "a \<notin> supp y" unfolding Supp_def by blast+ −
then obtain t where eq: "t \<approx> x" "supp t \<subseteq> supp x \<inter> supp y"+ −
using supp_equ equ_sym by blast+ −
then have "supp t \<subset> supp x" using nin+ −
by (metis `(a\<Colon>atom) \<in> supp (x\<Colon>lam)` le_infE psubset_eq set_rev_mp)+ −
then show "\<exists>t. t \<approx> x \<and> supp t \<subset> supp x" using eq by blast+ −
qed+ −
+ −
lemma Supp_exists: "\<exists>t. supp t = Supp t \<and> t \<approx> x"+ −
proof -+ −
have "\<And>fs x. supp x = fs \<Longrightarrow> \<exists>t. supp t = Supp t \<and> t \<approx> x"+ −
proof -+ −
fix fs+ −
show "\<And>x. supp x = fs \<Longrightarrow> \<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x"+ −
proof (cases "finite fs")+ −
case True+ −
assume fs: "finite fs"+ −
then show "\<And>x. supp x = fs \<Longrightarrow> \<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x"+ −
proof (induct fs rule: finite_psubset_induct, clarify)+ −
fix A :: "atom set" fix x :: lam+ −
assume IH: "\<And>B xa. \<lbrakk>B \<subset> supp x; supp xa = B\<rbrakk> \<Longrightarrow> \<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> xa"+ −
show "\<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x"+ −
proof (cases "supp x = Supp x")+ −
assume "supp x = Supp x"+ −
then show "\<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x"+ −
by (rule_tac x="x" in exI) (simp add: equ_refl)+ −
next+ −
assume "supp x \<noteq> Supp x"+ −
then have "Supp x \<subset> supp x" using Supp_supp by blast+ −
then obtain y where a1: "supp y \<subset> supp x" "y \<approx> x"+ −
using supp_psubset by blast+ −
then obtain t where "supp t = Supp t \<and> t \<approx> y"+ −
using IH[of "supp y" y] by blast+ −
then show "\<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x" using a1 equ_trans+ −
by blast+ −
qed+ −
qed+ −
next+ −
case False+ −
fix x :: lam+ −
assume "supp x = fs" "infinite fs"+ −
then show "\<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x"+ −
by (auto simp add: finite_supp)+ −
qed simp+ −
qed+ −
then show "\<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x" by blast+ −
qed+ −
+ −
lemma subst3: "x \<noteq> y \<and> atom x \<notin> Supp s \<Longrightarrow> Lam [x]. t [y ::= s] \<approx> Lam [x]. (t [y ::= s])"+ −
proof -+ −
assume as: "x \<noteq> y \<and> atom x \<notin> Supp s"+ −
obtain s' where s: "supp s' = Supp s'" "s' \<approx> s" using Supp_exists[of s] by blast+ −
then have lhs: "Lam [x]. t [y ::= s] \<approx> Lam [x]. t [y ::= s']" using subst_rsp_pre equ_refl equ_sym by blast+ −
have supp: "Supp s' = Supp s" using Supp_rsp s(2) by blast+ −
have lhs_rhs: "Lam [x]. t [y ::= s'] = Lam [x]. (t [y ::= s'])"+ −
by (simp add: fresh_def supp_Pair s supp as supp_at_base)+ −
have "t [y ::= s'] \<approx> t [y ::= s]"+ −
using subst_rsp_pre[OF equ_refl s(2)] .+ −
with Lam_rsp have rhs: "Lam [x]. (t [y ::= s']) \<approx> Lam [x]. (t [y ::= s])" .+ −
show ?thesis + −
using lhs[unfolded lhs_rhs] rhs equ_trans by blast+ −
qed+ −
+ −
thm subst3[quot_lifted]+ −
+ −
lemma Supp_Lam:+ −
"atom a \<notin> Supp (Lam [a].t)"+ −
proof -+ −
have "atom a \<notin> supp (Lam [a].t)" by (simp add: lam.supp)+ −
then show ?thesis using Supp_supp+ −
by blast+ −
qed+ −
+ −
lemma [eqvt]: "(p \<bullet> (a \<approx> b)) = ((p \<bullet> a) \<approx> (p \<bullet> b))"+ −
unfolding equ_def+ −
by perm_simp rule+ −
+ −
lemma [eqvt]: "p \<bullet> (Supp x) = Supp (p \<bullet> x)"+ −
unfolding Supp_def+ −
by perm_simp rule+ −
+ −
lemmas s = Supp_Lam[quot_lifted]+ −
+ −
lemma var_beta_pre: "s \<longrightarrow>b* r \<Longrightarrow> s = Var name \<Longrightarrow> r = Var name"+ −
apply (induct rule: beta_star.induct)+ −
apply simp+ −
apply (subgoal_tac "M2 = Var name")+ −
apply (thin_tac "M1 \<longrightarrow>b* M2")+ −
apply (thin_tac "M1 = Var name")+ −
apply (thin_tac "M1 = Var name \<Longrightarrow> M2 = Var name")+ −
defer+ −
apply simp+ −
apply (erule_tac beta.cases)+ −
apply simp_all+ −
done+ −
+ −
lemma var_beta: "Var name \<longrightarrow>b* r \<longleftrightarrow> r = Var name"+ −
by (auto simp add: var_beta_pre)+ −
+ −
lemma qlam_eq_iff:+ −
"(QVar n = QVar m) = (n = m)"+ −
apply descending unfolding equ_def var_beta by auto+ −
+ −
lemma "supp (QVar n) = {atom n}"+ −
unfolding supp_def+ −
apply simp+ −
unfolding qlam_eq_iff+ −
apply (fold supp_def)+ −
apply (simp add: supp_at_base)+ −
done+ −
+ −
end+ −
+ −
+ −
+ −