Paper/Paper.thy
author Christian Urban <urbanc@in.tum.de>
Fri, 19 Mar 2010 17:20:25 +0100
changeset 1552 d14b8b21bef2
parent 1550 66d388a84e3c
child 1556 a7072d498723
permissions -rw-r--r--
picture

(*<*)
theory Paper
imports "../Nominal/Test" "LaTeXsugar"
begin

notation (latex output)
  swap ("'(_ _')" [1000, 1000] 1000) and
  fresh ("_ # _" [51, 51] 50) and
  fresh_star ("_ #* _" [51, 51] 50) and
  supp ("supp _" [78] 73) and
  uminus ("-_" [78] 73) and
  If  ("if _ then _ else _" 10)
(*>*)

section {* Introduction *}

text {*
  So far, Nominal Isabelle provides a mechanism for constructing
  alpha-equated terms such as

  \begin{center}
  $t ::= x \mid t\;t \mid \lambda x. t$
  \end{center}

  \noindent
  where free and bound variables have names.  For such terms Nominal Isabelle
  derives automatically a reasoning infrastructure, which has been used
  successfully in formalisations of an equivalence checking algorithm for LF
  \cite{UrbanCheneyBerghofer08}, Typed
  Scheme~\cite{TobinHochstadtFelleisen08}, several calculi for concurrency
  \cite{BengtsonParrow07,BengtsonParow09} and a strong normalisation result
  for cut-elimination in classical logic \cite{UrbanZhu08}. It has also been
  used by Pollack for formalisations in the locally-nameless approach to
  binding \cite{SatoPollack10}.

  However, Nominal Isabelle has fared less well in a formalisation of
  the algorithm W \cite{UrbanNipkow09}, where types and type-schemes
  are of the form

  \begin{center}
  \begin{tabular}{l}
  $T ::= x \mid T \rightarrow T$ \hspace{5mm} $S ::= \forall \{x_1,\ldots, x_n\}. T$
  \end{tabular}
  \end{center}

  \noindent
  and the quantification binds at once a finite (possibly empty) set of
  type-variables.  While it is possible to implement this kind of more general
  binders by iterating single binders, this leads to a rather clumsy
  formalisation of W. The need of iterating single binders is also one reason
  why Nominal Isabelle and similar theorem provers that only provide
  mechanisms for binding single variables have not fared extremely well with the
  more advanced tasks in the POPLmark challenge \cite{challenge05}, because
  also there one would like to bind multiple variables at once.

  Binding multiple variables has interesting properties that are not captured
  by iterating single binders. First, in the case of type-schemes, we do not
  like to make a distinction about the order of the bound variables. Therefore
  we would like to regard the following two type-schemes as alpha-equivalent

  \begin{center}
  $\forall \{x, y\}. x \rightarrow y  \;\approx_\alpha\; \forall \{y, x\}. y \rightarrow x$ 
  \end{center}

  \noindent
  but  the following two should \emph{not} be alpha-equivalent

  \begin{center}
  $\forall \{x, y\}. x \rightarrow y  \;\not\approx_\alpha\; \forall \{z\}. z \rightarrow z$ 
  \end{center}

  \noindent
  assuming that $x$, $y$ and $z$ are distinct. Moreover, we like to regard type-schemes as 
  alpha-equivalent, if they differ only on \emph{vacuous} binders, such as

  \begin{center}
  $\forall \{x\}. x \rightarrow y  \;\approx_\alpha\; \forall \{x, z\}. x \rightarrow y$ 
  \end{center}

  \noindent
  where $z$ does not occur freely in the type.
  In this paper we will give a general binding mechanism and associated
  notion of alpha-equivalence that can be used to faithfully represent
  this kind of binding in Nominal Isabelle.  The difficulty of finding the right notion 
  for alpha-equivalence in this case can be appreciated by considering that the 
  definition given by Leroy in \cite{Leroy92} is incorrect (it omits a side-condition).

  However, the notion of alpha-equivalence that is preserved by vacuous binders is not
  alway wanted. For example in terms like

  \begin{equation}\label{one}
  \LET x = 3 \AND y = 2 \IN x\,-\,y \END
  \end{equation}

  \noindent
  we might not care in which order the assignments $x = 3$ and $y = 2$ are
  given, but it would be unusual to regard \eqref{one} as alpha-equivalent 
  with

  \begin{center}
  $\LET x = 3 \AND y = 2 \AND z = loop \IN x\,-\,y \END$
  \end{center}

  \noindent
  Therefore we will also provide a separate binding mechanism for cases in
  which the order of binders does not matter, but the ``cardinality'' of the
  binders has to agree.

  However, we found that this is still not sufficient for dealing with
  language constructs frequently occurring in programming language
  research. For example in $\mathtt{let}$s containing patterns

  \begin{equation}\label{two}
  \LET (x, y) = (3, 2) \IN x\,-\,y \END
  \end{equation}

  \noindent
  we want to bind all variables from the pattern inside the body of the
  $\mathtt{let}$, but we also care about the order of these variables, since
  we do not want to identify \eqref{two} with

  \begin{center}
  $\LET (y, x) = (3, 2) \IN x\,- y\,\END$
  \end{center}

  \noindent
  As a result, we provide three general binding mechanisms each of which binds multiple
  variables at once, and we let the user chose which one is intended when formalising a
  programming language calculus.

  By providing these general binding mechanisms, however, we have to work around 
  a problem that has been pointed out by Pottier in \cite{Pottier06}: in 
  $\mathtt{let}$-constructs of the form

  \begin{center}
  $\LET x_1 = t_1 \AND \ldots \AND x_n = t_n \IN s \END$
  \end{center}

  \noindent
  which bind all the $x_i$ in $s$, we might not care about the order in 
  which the $x_i = t_i$ are given, but we do care about the information that there are 
  as many $x_i$ as there are $t_i$. We lose this information if we represent the 
  $\mathtt{let}$-constructor by something like 

  \begin{center}
  $\LET [x_1,\ldots,x_n].s\;\; [t_1,\ldots,t_n]$
  \end{center}

  \noindent
  where the notation $[\_\!\_].\_\!\_$ indicates that the $x_i$ become 
  bound in $s$. In this representation the term \mbox{$\LET [x].s\;\;[t_1,t_2]$}
  would be perfectly legal instance, and so one needs additional predicates about terms 
  to ensure that the two lists are of equal length. This can result into very 
  messy reasoning (see for example~\cite{BengtsonParow09}). 
  To avoid this, we will allow for example to specify $\mathtt{let}$s 
  as follows

  \begin{center}
  \begin{tabular}{r@ {\hspace{2mm}}r@ {\hspace{2mm}}l}
  $trm$ & $::=$  & \ldots\\ 
        & $\mid$ & $\mathtt{let}\;a\!::\!assn\;\;s\!::\!trm\quad\mathtt{bind}\;bn\,(a) \IN s$\\[1mm]
  $assn$ & $::=$  & $\mathtt{anil}$\\
         & $\mid$ & $\mathtt{acons}\;\;name\;\;trm\;\;assn$
  \end{tabular}
  \end{center}

  \noindent
  where $assn$ is an auxiliary type representing a list of assignments
  and $bn$ an auxiliary function identifying the variables to be bound by 
  the $\mathtt{let}$. This function can be defined as 

  \begin{center}
  $bn\,(\mathtt{anil}) = \varnothing \qquad bn\,(\mathtt{acons}\;x\;t\;as) = \{x\} \cup bn\,(as)$ 
  \end{center}
  
  \noindent
  The scope of the binding is indicated by labels given to the types, for
  example \mbox{$s\!::\!trm$}, and a binding clause, in this case
  $\mathtt{bind}\;bn\,(a) \IN s$, that states bind all the names the function
  $bn$ returns in $s$.  This style of specifying terms and bindings is heavily
  inspired by the syntax of the Ott-tool \cite{ott-jfp}.

  However, we will not be able to deal with all specifications that are
  allowed by Ott. One reason is that we establish the reasoning infrastructure
  for alpha-\emph{equated} terms. In contrast, Ott produces for a subset of
  its specifications a reasoning infrastructure in Isabelle/HOL for
  \emph{non}-alpha-equated, or ``raw'', terms. While our alpha-equated terms
  and the raw terms produced by Ott use names for the bound variables,
  there is a key difference: working with alpha-equated terms means that the
  two type-schemes with $x$, $y$ and $z$ being distinct

  \begin{center}
  $\forall \{x\}. x \rightarrow y  \;=\; \forall \{x, z\}. x \rightarrow y$ 
  \end{center}
  
  \noindent
  are not just alpha-equal, but actually equal. As a
  result, we can only support specifications that make sense on the level of
  alpha-equated terms (offending specifications, which for example bind a variable
  according to a variable bound somewhere else, are not excluded by Ott).  Our
  insistence on reasoning with alpha-equated terms comes from the wealth of
  experience we gained with the older version of Nominal Isabelle: for
  non-trivial properties, reasoning about alpha-equated terms is much easier
  than reasoning with raw terms. The fundamental reason is that the
  HOL-logic underlying Nominal Isabelle allows us to replace
  ``equals-by-equals''. In contrast replacing ``alpha-equals-by-alpha-equals''
  in a representation based on raw terms requires a lot of extra reasoning work.

  Although in informal settings a reasoning infrastructure for alpha-equated 
  terms (that have names for bound variables) is nearly always taken for granted, establishing 
  it automatically in the Isabelle/HOL theorem prover is a rather non-trivial task. 
  For every specification we will need to construct a type containing as 
  elements the alpha-equated terms. To do so we use 
  the standard HOL-technique of defining a new type by  
  identifying a non-empty subset of an existing type. In our 
  case  we take as the starting point the type of sets of raw
  terms (the latter being defined as a datatype); identify the 
  alpha-equivalence classes according to our alpha-equivalence relation and 
  then define the new type as these alpha-equivalence classes.  The construction we 
  can perform in HOL is illustrated by the following picture:
 
  \begin{center}
  \begin{tikzpicture}
  %\draw[step=2mm] (-4,-1) grid (4,1);
  
  \draw[very thick] (0.7,0.4) circle (4.25mm);
  \draw[rounded corners=1mm, very thick] ( 0.0,-0.8) rectangle ( 1.8, 0.9);
  \draw[rounded corners=1mm, very thick] (-1.95,0.85) rectangle (-2.85,-0.05);
  
  \draw (-2.0, 0.845) --  (0.7,0.845);
  \draw (-2.0,-0.045)  -- (0.7,-0.045);

  \draw ( 0.7, 0.4) node {\begin{tabular}{@ {}c@ {}}$\alpha$-\\[-1mm]clas.\end{tabular}};
  \draw (-2.4, 0.4) node {\begin{tabular}{@ {}c@ {}}$\alpha$-eq.\\[-1mm]terms\end{tabular}};
  \draw (1.8, 0.48) node[right=-0.1mm]
    {\begin{tabular}{@ {}l@ {}}existing\\[-1mm] type\\ (sets of raw terms)\end{tabular}};
  \draw (0.9, -0.35) node {\begin{tabular}{@ {}l@ {}}non-empty\\[-1mm]subset\end{tabular}};
  \draw (-3.25, 0.55) node {\begin{tabular}{@ {}l@ {}}new\\[-1mm]type\end{tabular}};
  
  \draw[<->, very thick] (-1.8, 0.3) -- (-0.1,0.3);
  \draw (-0.95, 0.3) node[above=0mm] {isomorphism};

  %\rput(3.7,1.75){isomorphism}
  \end{tikzpicture}

  %%\begin{pspicture}(0.5,0.0)(8,2.5)
  %%\showgrid
  %\psframe[linewidth=0.4mm,framearc=0.2](5,0.0)(7.7,2.5)
  %\pscircle[linewidth=0.3mm,dimen=middle](6,1.5){0.6}
  %\psframe[linewidth=0.4mm,framearc=0.2,dimen=middle](1.1,2.1)(2.3,0.9)
  
  %\pcline[linewidth=0.4mm]{->}(2.6,1.5)(4.8,1.5)
  
  %\pcline[linewidth=0.2mm](2.2,2.1)(6,2.1)
  %\pcline[linewidth=0.2mm](2.2,0.9)(6,0.9)

  %\rput(7.3,2.2){$\mathtt{phi}$}
  %\rput(6,1.5){$\lama$}
  %\rput[l](7.6,2.05){\begin{tabular}{l}existing\\[-1.6mm]type\end{tabular}}
  %\rput[r](1.2,1.5){\begin{tabular}{l}new\\[-1.6mm]type\end{tabular}}
  %\rput(6.1,0.5){\begin{tabular}{l}non-empty\\[-1.6mm]subset\end{tabular}}
  %\rput[c](1.7,1.5){$\lama$}
  %\rput(3.7,1.75){isomorphism}
  %\end{pspicture}
  \end{center}

  \noindent
  To ``lift'' the reasoning from the underlying type to the new type
  is usually a tricky task. To ease this task we reimplemented in Isabelle/HOL
  the quotient package described by Homeier \cite{Homeier05}. This
  re-implementation will automate the proofs we require for our
  reasoning infrastructure over alpha-equated terms.\medskip

  \noindent
  {\bf Contributions:}  We provide new definitions for when terms
  involving multiple binders are alpha-equivalent. These definitions are
  inspired by earlier work of Pitts \cite{}. By means of automatic
  proofs, we establish a reasoning infrastructure for alpha-equated
  terms, including properties about support, freshness and equality
  conditions for alpha-equated terms. We re also able to derive, at the moment 
  only manually, for these terms a strong induction principle that 
  has the variable convention already built in.
*}

section {* A Short Review of the Nominal Logic Work *}

text {*
  At its core, Nominal Isabelle is based on the nominal logic work by Pitts
  \cite{Pitts03}. The implementation of this work are described in
  \cite{HuffmanUrban10}, which we review here briefly to aid the description
  of what follows in the next sections. Two central notions in the nominal
  logic work are sorted atoms and permutations of atoms. The sorted atoms
  represent different kinds of variables, such as term- and type-variables in
  Core-Haskell, and it is assumed that there is an infinite supply of atoms
  for each sort. However, in order to simplify the description, we
  shall assume in what follows that there is only a single sort of atoms.

  Permutations are bijective functions from atoms to atoms that are 
  the identity everywhere except on a finite number of atoms. There is a 
  two-place permutation operation written

  @{text[display,indent=5] "_ \<bullet> _  ::  (\<alpha> \<times> \<alpha>) list \<Rightarrow> \<beta> \<Rightarrow> \<beta>"}

  \noindent 
  with a generic type in which @{text "\<alpha>"} stands for the type of atoms 
  and @{text "\<beta>"} for the type of the objects on which the permutation 
  acts. In Nominal Isabelle the identity permutation is written as @{term "0::perm"},
  the composition of two permutations @{term p} and @{term q} as \mbox{@{term "p + q"}} 
  and the inverse permutation @{term p} as @{text "- p"}. The permutation
  operation is defined for products, lists, sets, functions, booleans etc 
  (see \cite{HuffmanUrban10}).

  The most original aspect of the nominal logic work of Pitts et al is a general
  definition for ``the set of free variables of an object @{text "x"}''.  This
  definition is general in the sense that it applies not only to lambda-terms,
  but also to lists, products, sets and even functions. The definition depends
  only on the permutation operation and on the notion of equality defined for
  the type of @{text x}, namely:

  @{thm[display,indent=5] supp_def[no_vars, THEN eq_reflection]}

  \noindent
  There is also the derived notion for when an atom @{text a} is \emph{fresh}
  for an @{text x}, defined as
  
  @{thm[display,indent=5] fresh_def[no_vars]}

  \noindent
  We also use for sets of atoms the abbreviation 
  @{thm (lhs) fresh_star_def[no_vars]} defined as 
  @{thm (rhs) fresh_star_def[no_vars]}.
  A striking consequence of these definitions is that we can prove
  without knowing anything about the structure of @{term x} that
  swapping two fresh atoms, say @{text a} and @{text b}, leave 
  @{text x} unchanged. 

  \begin{property}
  @{thm[mode=IfThen] swap_fresh_fresh[no_vars]}
  \end{property}

  \noindent
  For a proof see \cite{HuffmanUrban10}.

  \begin{property}
  @{thm[mode=IfThen] at_set_avoiding[no_vars]}
  \end{property}

*}


section {* Abstractions *}

text {*
  General notion of alpha-equivalence (depends on a free-variable
  function and a relation).
*}

section {* Alpha-Equivalence and Free Variables *}

text {*
  Restrictions

  \begin{itemize}
  \item non-emptyness
  \item positive datatype definitions
  \item finitely supported abstractions
  \item respectfulness of the bn-functions\bigskip
  \item binders can only have a ``single scope''
  \end{itemize}
*}

section {* Examples *}

section {* Adequacy *}

section {* Related Work *}

section {* Conclusion *}

text {*
  Complication when the single scopedness restriction is lifted (two 
  overlapping permutations)
*}

text {*

  TODO: function definitions:
  \medskip

  \noindent
  {\bf Acknowledgements:} We are very grateful to Andrew Pitts for  
  many discussions about Nominal Isabelle. We thank Peter Sewell for 
  making the informal notes \cite{SewellBestiary} available to us and 
  also for explaining some of the finer points about the abstract 
  definitions and about the implementation of the Ott-tool.


*}



(*<*)
end
(*>*)