(* Nominal Mutual Functions
Author: Christian Urban
heavily based on the code of Alexander Krauss
(code forked on 14 January 2011)
Main entry points to the nominal function package.
*)
signature NOMINAL_FUNCTION =
sig
include NOMINAL_FUNCTION_DATA
val add_nominal_function: (binding * typ option * mixfix) list ->
(Attrib.binding * term) list -> Nominal_Function_Common.nominal_function_config ->
(Proof.context -> tactic) -> local_theory -> nominal_info * local_theory
val add_nominal_function_cmd: (binding * string option * mixfix) list ->
(Attrib.binding * string) list -> Nominal_Function_Common.nominal_function_config ->
(Proof.context -> tactic) -> bool -> local_theory -> nominal_info * local_theory
val nominal_function: (binding * typ option * mixfix) list ->
(Attrib.binding * term) list -> Nominal_Function_Common.nominal_function_config ->
local_theory -> Proof.state
val nominal_function_cmd: (binding * string option * mixfix) list ->
(Attrib.binding * string) list -> Nominal_Function_Common.nominal_function_config ->
bool -> local_theory -> Proof.state
val setup : theory -> theory
val get_congs : Proof.context -> thm list
val get_info : Proof.context -> term -> nominal_info
end
structure Nominal_Function : NOMINAL_FUNCTION =
struct
open Function_Lib
open Function_Common
open Nominal_Function_Common
(* Check for all sorts of errors in the input - nominal needs a different checking function *)
fun nominal_check_defs ctxt fixes eqs =
let
val fnames = map (fst o fst) fixes
fun check geq =
let
fun input_error msg = error (cat_lines [msg, Syntax.string_of_term ctxt geq])
fun check_head fname =
member (op =) fnames fname orelse
input_error ("Illegal equation head. Expected " ^ commas_quote fnames)
val (fname, qs, gs, args, rhs) = split_def ctxt check_head geq
val _ = length args > 0 orelse input_error "Function has no arguments:"
fun add_bvs t is = add_loose_bnos (t, 0, is)
val rvs = (subtract (op =) (fold add_bvs args []) (add_bvs rhs []))
|> map (fst o nth (rev qs))
val _ = forall (not o Term.exists_subterm
(fn Free (n, _) => member (op =) fnames n | _ => false)) (gs @ args)
orelse input_error "Defined function may not occur in premises or arguments"
val freeargs = map (fn t => subst_bounds (rev (map Free qs), t)) args
val funvars = filter (fn q =>
exists (exists_subterm (fn (Free q') $ _ => q = q' | _ => false)) freeargs) qs
val _ = null funvars orelse (warning (cat_lines
["Bound variable" ^ plural " " "s " funvars ^
commas_quote (map fst funvars) ^ " occur" ^ plural "s" "" funvars ^
" in function position.", "Misspelled constructor???"]); true)
in
(fname, length args)
end
val grouped_args = AList.group (op =) (map check eqs)
val _ = grouped_args
|> map (fn (fname, ars) =>
length (distinct (op =) ars) = 1
orelse error ("Function " ^ quote fname ^
" has different numbers of arguments in different equations"))
val not_defined = subtract (op =) (map fst grouped_args) fnames
val _ = null not_defined
orelse error ("No defining equations for function" ^
plural " " "s " not_defined ^ commas_quote not_defined)
fun check_sorts ((fname, fT), _) =
Sorts.of_sort (Sign.classes_of (Proof_Context.theory_of ctxt)) (fT, @{sort "pt"})
orelse error (cat_lines
["Type of " ^ quote fname ^ " is not of sort " ^ quote "pt" ^ ":",
Syntax.string_of_typ (Config.put show_sorts true ctxt) fT])
val _ = map check_sorts fixes
in
()
end
val simp_attribs = map (Attrib.internal o K)
[Simplifier.simp_add,
Code.add_default_eqn_attribute,
Nitpick_Simps.add]
val psimp_attribs = map (Attrib.internal o K)
[Nitpick_Psimps.add]
fun mk_defname fixes = fixes |> map (fst o fst) |> space_implode "_"
fun add_simps fnames post sort extra_qualify label mod_binding moreatts
simps lthy =
let
val spec = post simps
|> map (apfst (apsnd (fn ats => moreatts @ ats)))
|> map (apfst (apfst extra_qualify))
val (saved_spec_simps, lthy) =
fold_map Local_Theory.note spec lthy
val saved_simps = maps snd saved_spec_simps
val simps_by_f = sort saved_simps
fun add_for_f fname simps =
Local_Theory.note
((mod_binding (Binding.qualify true fname (Binding.name label)), []), simps)
#> snd
in
(saved_simps, fold2 add_for_f fnames simps_by_f lthy)
end
(* nominal *)
fun prepare_nominal_function do_print prep default_constraint fixspec eqns config lthy =
let
val constrn_fxs = map (fn (b, T, mx) => (b, SOME (the_default default_constraint T), mx))
val ((fixes0, spec0), ctxt') = prep (constrn_fxs fixspec) eqns lthy
val fixes = map (apfst (apfst Binding.name_of)) fixes0;
val spec = map (fn (bnd, prop) => (bnd, [prop])) spec0;
val (eqs, post, sort_cont, cnames) =
empty_preproc nominal_check_defs config ctxt' fixes spec (* nominal *)
val defname = mk_defname fixes
val NominalFunctionConfig {partials, ...} = config
val ((goal_state, cont), lthy') =
Nominal_Function_Mutual.prepare_nominal_function_mutual config defname fixes eqs lthy
fun afterqed [[proof]] lthy =
let
val NominalFunctionResult {fs, R, psimps, simple_pinducts,
termination, domintros, cases, eqvts, ...} =
cont (Thm.close_derivation proof)
val fnames = map (fst o fst) fixes
fun qualify n = Binding.name n
|> Binding.qualify true defname
val conceal_partial = if partials then I else Binding.conceal
val addsmps = add_simps fnames post sort_cont
val (((psimps', pinducts'), (_, [termination'])), lthy) =
lthy
|> addsmps (conceal_partial o Binding.qualify false "partial")
"psimps" conceal_partial psimp_attribs psimps
||>> Local_Theory.note ((conceal_partial (qualify "pinduct"),
[Attrib.internal (K (Rule_Cases.case_names cnames)),
Attrib.internal (K (Rule_Cases.consumes 1)),
Attrib.internal (K (Induct.induct_pred ""))]), simple_pinducts)
||>> Local_Theory.note ((Binding.conceal (qualify "termination"), []), [termination])
||> (snd o Local_Theory.note ((qualify "cases",
[Attrib.internal (K (Rule_Cases.case_names cnames))]), [cases]))
||> (case domintros of NONE => I | SOME thms =>
Local_Theory.note ((qualify "domintros", []), thms) #> snd)
val info = { add_simps=addsmps, case_names=cnames, psimps=psimps',
pinducts=snd pinducts', simps=NONE, inducts=NONE, termination=termination',
fs=fs, R=R, defname=defname, is_partial=true, eqvts=eqvts}
val _ = Proof_Display.print_consts do_print lthy (K false) (map fst fixes)
in
(info,
lthy |> Local_Theory.declaration {syntax = false, pervasive = false}
(add_function_data o morph_function_data info))
end
in
((goal_state, afterqed), lthy')
end
fun gen_add_nominal_function do_print prep default_constraint fixspec eqns config tac lthy =
let
val ((goal_state, afterqed), lthy') =
prepare_nominal_function do_print prep default_constraint fixspec eqns config lthy
val pattern_thm =
case SINGLE (tac lthy') goal_state of
NONE => error "pattern completeness and compatibility proof failed"
| SOME st => Goal.finish lthy' st
in
lthy'
|> afterqed [[pattern_thm]]
end
val add_nominal_function =
gen_add_nominal_function false Specification.check_spec (Type_Infer.anyT HOLogic.typeS)
fun add_nominal_function_cmd a b c d int =
gen_add_nominal_function int Specification.read_spec "_::type" a b c d
fun gen_nominal_function do_print prep default_constraint fixspec eqns config lthy =
let
val ((goal_state, afterqed), lthy') =
prepare_nominal_function do_print prep default_constraint fixspec eqns config lthy
in
lthy'
|> Proof.theorem NONE (snd oo afterqed) [[(Logic.unprotect (concl_of goal_state), [])]]
|> Proof.refine (Method.primitive_text (K goal_state)) |> Seq.hd
end
val nominal_function =
gen_nominal_function false Specification.check_spec (Type_Infer.anyT HOLogic.typeS)
fun nominal_function_cmd a b c int =
gen_nominal_function int Specification.read_spec "_::type" a b c
fun add_case_cong n thy =
let
val cong = #case_cong (Datatype.the_info thy n)
|> safe_mk_meta_eq
in
Context.theory_map
(Function_Ctx_Tree.map_function_congs (Thm.add_thm cong)) thy
end
val setup_case_cong = Datatype.interpretation (K (fold add_case_cong))
(* setup *)
val setup =
Attrib.setup @{binding fundef_cong}
(Attrib.add_del Function_Ctx_Tree.cong_add Function_Ctx_Tree.cong_del)
"declaration of congruence rule for function definitions"
#> setup_case_cong
#> Function_Relation.setup
#> Function_Common.Termination_Simps.setup
val get_congs = Function_Ctx_Tree.get_function_congs
fun get_info ctxt t = Item_Net.retrieve (get_function ctxt) t
|> the_single |> snd
(* outer syntax *)
local
val option_parser = Parse.group (fn () => "option")
((Parse.reserved "sequential" >> K Sequential)
|| ((Parse.reserved "default" |-- Parse.term) >> Default)
|| (Parse.reserved "domintros" >> K DomIntros)
|| (Parse.reserved "no_partials" >> K No_Partials)
|| ((Parse.reserved "invariant" |-- Parse.term) >> Invariant))
fun config_parser default =
(Scan.optional (Parse.$$$ "(" |-- Parse.!!! (Parse.list1 option_parser) --| Parse.$$$ ")") [])
>> (fn opts => fold apply_opt opts default)
in
fun nominal_function_parser default_cfg =
config_parser default_cfg -- Parse.fixes -- Parse_Spec.where_alt_specs
end
(* nominal *)
val _ =
Outer_Syntax.local_theory_to_proof' "nominal_primrec" "define general recursive nominal functions"
Keyword.thy_goal
(nominal_function_parser nominal_default_config
>> (fn ((config, fixes), statements) => nominal_function_cmd fixes statements config))
end