(* Title: nominal_dt_rawperm.ML Author: Cezary Kaliszyk Author: Christian Urban Definitions of the raw bn, fv and fv_bn functions*)signature NOMINAL_DT_RAWFUNS =sig (* binding modes and binding clauses *) datatype bmode = Lst | Res | Set datatype bclause = BC of bmode * (term option * int) list * int list val setify: Proof.context -> term -> term val listify: Proof.context -> term -> term val define_raw_fvs: string list -> term list -> Datatype_Aux.descr -> (string * sort) list -> (term * int * (int * term option) list list) list -> (term * int * (int * term option) list list) list -> bclause list list list -> Proof.context -> term list * term list * thm list * local_theoryendstructure Nominal_Dt_RawFuns: NOMINAL_DT_RAWFUNS =structdatatype bmode = Lst | Res | Setdatatype bclause = BC of bmode * (term option * int) list * int list(* testing for concrete atom types *)fun is_atom ctxt ty = Sign.of_sort (ProofContext.theory_of ctxt) (ty, @{sort at_base})fun is_atom_set ctxt (Type ("fun", [t, @{typ bool}])) = is_atom ctxt t | is_atom_set _ _ = false;fun is_atom_fset ctxt (Type (@{type_name "fset"}, [t])) = is_atom ctxt t | is_atom_fset _ _ = false;fun is_atom_list ctxt (Type (@{type_name "list"}, [t])) = is_atom ctxt t | is_atom_list _ _ = false(* functions for producing sets, fsets and lists of general atom type out from concrete atom types *)fun mk_atom_set t =let val ty = fastype_of t; val atom_ty = HOLogic.dest_setT ty --> @{typ "atom"}; val img_ty = atom_ty --> ty --> @{typ "atom set"};in Const (@{const_name image}, img_ty) $ mk_atom_ty atom_ty tendfun mk_atom_fset t =let val ty = fastype_of t; val atom_ty = dest_fsetT ty --> @{typ "atom"}; val fmap_ty = atom_ty --> ty --> @{typ "atom fset"}; val fset_to_set = @{term "fset_to_set :: atom fset => atom set"}in fset_to_set $ (Const (@{const_name fmap}, fmap_ty) $ Const (@{const_name atom}, atom_ty) $ t)endfun mk_atom_list t =let val ty = fastype_of t; val atom_ty = dest_listT ty --> @{typ atom}; val map_ty = atom_ty --> ty --> @{typ "atom list"};in Const (@{const_name map}, map_ty) $ mk_atom_ty atom_ty tend(* functions that coerces concrete atoms, sets and fsets into sets of general atoms *)fun setify ctxt t =let val ty = fastype_of t;in if is_atom ctxt ty then HOLogic.mk_set @{typ atom} [mk_atom t] else if is_atom_set ctxt ty then mk_atom_set t else if is_atom_fset ctxt ty then mk_atom_fset t else raise TERM ("setify", [t])end(* functions that coerces concrete atoms and lists into lists of general atoms *)fun listify ctxt t =let val ty = fastype_of t;in if is_atom ctxt ty then HOLogic.mk_list @{typ atom} [mk_atom t] else if is_atom_list ctxt ty then mk_atom_set t else raise TERM ("listify", [t])end(* coerces a list into a set *)fun to_set t = if fastype_of t = @{typ "atom list"} then @{term "set::atom list => atom set"} $ t else t(* functions that construct the equations for fv and fv_bn *)fun mk_fv_body fv_map args i = let val arg = nth args i val ty = fastype_of argin case (AList.lookup (op=) fv_map ty) of NONE => mk_supp arg | SOME fv => fv $ argend fun mk_fv_bn_body fv_map fv_bn_map bn_args args i = let val arg = nth args i val ty = fastype_of argin case AList.lookup (op=) bn_args i of NONE => (case (AList.lookup (op=) fv_map ty) of NONE => mk_supp arg | SOME fv => fv $ arg) | SOME (NONE) => @{term "{}::atom set"} | SOME (SOME bn) => the (AList.lookup (op=) fv_bn_map bn) $ argend fun mk_fv_binder lthy fv_bn_map args (bn_option, i) = let val arg = nth args iin case bn_option of NONE => (setify lthy arg, @{term "{}::atom set"}) | SOME bn => (to_set (bn $ arg), the (AList.lookup (op=) fv_bn_map bn) $ arg)end fun mk_fv_rhs lthy fv_map fv_bn_map args (BC (_, binders, bodies)) =let val t1 = map (mk_fv_body fv_map args) bodies val (t2, t3) = split_list (map (mk_fv_binder lthy fv_bn_map args) binders)in fold_union (mk_diff (fold_union t1, fold_union t2)::t3)endfun mk_fv_bn_rhs lthy fv_map fv_bn_map bn_args args bclause = case bclause of BC (_, [], bodies) => fold_union (map (mk_fv_bn_body fv_map fv_bn_map bn_args args) bodies) | BC (_, binders, bodies) => let val t1 = map (mk_fv_body fv_map args) bodies val (t2, t3) = split_list (map (mk_fv_binder lthy fv_bn_map args) binders) in fold_union (mk_diff (fold_union t1, fold_union t2)::t3) endfun mk_fv_eq lthy fv_map fv_bn_map (constr, ty, arg_tys) bclauses = let val arg_names = Datatype_Prop.make_tnames arg_tys val args = map Free (arg_names ~~ arg_tys) val fv = the (AList.lookup (op=) fv_map ty) val lhs = fv $ list_comb (constr, args) val rhs_trms = map (mk_fv_rhs lthy fv_map fv_bn_map args) bclauses val rhs = fold_union rhs_trmsin HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))endfun mk_fv_bn_eq lthy bn_trm fv_map fv_bn_map (bn_args, (constr, _, arg_tys)) bclauses =let val arg_names = Datatype_Prop.make_tnames arg_tys val args = map Free (arg_names ~~ arg_tys) val fv_bn = the (AList.lookup (op=) fv_bn_map bn_trm) val lhs = fv_bn $ list_comb (constr, args) val rhs_trms = map (mk_fv_bn_rhs lthy fv_map fv_bn_map bn_args args) bclauses val rhs = fold_union rhs_trmsin HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))endfun mk_fv_bn_eqs lthy fv_map fv_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) = let val nth_constrs_info = nth constrs_info bn_n val nth_bclausess = nth bclausesss bn_nin map2 (mk_fv_bn_eq lthy bn_trm fv_map fv_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausessendfun define_raw_fvs t1 t2 dt_descr sorts bn_funs bn_funs2 bclausesss lthy =let val _ = tracing ("bn-functions to be defined\n " ^ commas t1) val _ = tracing ("bn-equations\n " ^ cat_lines (map (Syntax.string_of_term lthy) t2)) val fv_names = prefix_dt_names dt_descr sorts "fv_" val fv_arg_tys = map (fn (i, _) => nth_dtyp dt_descr sorts i) dt_descr; val fv_tys = map (fn ty => ty --> @{typ "atom set"}) fv_arg_tys; val fv_frees = map Free (fv_names ~~ fv_tys); val fv_map = fv_arg_tys ~~ fv_frees val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_funs) val (bns2, bn_tys2) = split_list (map (fn (bn, i, _) => (bn, i)) bn_funs2) val bn_args2 = map (fn (_, _, arg) => arg) bn_funs2 val fv_bn_names2 = map (fn bn => "fv_" ^ (fst (dest_Free bn))) bns2 val fv_bn_arg_tys2 = map (fn i => nth_dtyp dt_descr sorts i) bn_tys2 val fv_bn_tys2 = map (fn ty => ty --> @{typ "atom set"}) fv_bn_arg_tys2 val fv_bn_frees2 = map Free (fv_bn_names2 ~~ fv_bn_tys2) val fv_bn_map2 = bns ~~ fv_bn_frees2 val fv_bn_map3 = bns2 ~~ fv_bn_frees2 val _ = tracing ("fn_bn_map2 " ^ @{make_string} fv_bn_map2) val _ = tracing ("fn_bn_map3 " ^ @{make_string} fv_bn_map3) val constrs_info = all_dtyp_constrs_types dt_descr sorts val fv_eqs2 = map2 (map2 (mk_fv_eq lthy fv_map fv_bn_map2)) constrs_info bclausesss val fv_bn_eqs2 = map (mk_fv_bn_eqs lthy fv_map fv_bn_map3 constrs_info bclausesss) bn_funs2 val _ = tracing ("functions to be defined\n " ^ @{make_string} (fv_names @ fv_bn_names2)) val _ = tracing ("equations\n " ^ cat_lines (map (Syntax.string_of_term lthy) (flat fv_eqs2 @ flat fv_bn_eqs2))) val all_fv_names = map (fn s => (Binding.name s, NONE, NoSyn)) (fv_names @ fv_bn_names2) val all_fv_eqs = map (pair Attrib.empty_binding) (flat fv_eqs2 @ flat fv_bn_eqs2) fun pat_completeness_auto lthy = Pat_Completeness.pat_completeness_tac lthy 1 THEN auto_tac (clasimpset_of lthy) fun prove_termination lthy = Function.prove_termination NONE (Lexicographic_Order.lexicographic_order_tac true lthy) lthy val (_, lthy') = Function.add_function all_fv_names all_fv_eqs Function_Common.default_config pat_completeness_auto lthy val (info, lthy'') = prove_termination (Local_Theory.restore lthy') val {fs, simps, ...} = info; val morphism = ProofContext.export_morphism lthy'' lthy val fs_exp = map (Morphism.term morphism) fs val (fv_frees_exp, fv_bns_exp) = chop (length fv_frees) fs_exp val simps_exp = Morphism.fact morphism (the simps)in (fv_frees_exp, fv_bns_exp, simps_exp, lthy'')endend (* structure *)