renamed get_fun to absrep_fun; introduced explicit checked versions of the term functions
signature QUOTIENT_TERM =
sig
exception LIFT_MATCH of string
datatype flag = absF | repF
val absrep_fun: flag -> Proof.context -> (typ * typ) -> term
val absrep_fun_chk: flag -> Proof.context -> (typ * typ) -> term
val regularize_trm: Proof.context -> (term * term) -> term
val regularize_trm_chk: Proof.context -> (term * term) -> term
val inj_repabs_trm: Proof.context -> (term * term) -> term
val inj_repabs_trm_chk: Proof.context -> (term * term) -> term
end;
structure Quotient_Term: QUOTIENT_TERM =
struct
open Quotient_Info;
exception LIFT_MATCH of string
(* Calculates the aggregate abs and rep functions for a given type; *)
(* repF is for constants' arguments; absF is for constants; *)
(* function types need to be treated specially, since repF and absF *)
(* change *)
datatype flag = absF | repF
fun negF absF = repF
| negF repF = absF
fun mk_identity ty = Const (@{const_name "id"}, ty --> ty)
fun mk_compose flag (trm1, trm2) =
case flag of
absF => Const (@{const_name "comp"}, dummyT) $ trm1 $ trm2
| repF => Const (@{const_name "comp"}, dummyT) $ trm2 $ trm1
fun absrep_fun_aux lthy s fs =
let
val thy = ProofContext.theory_of lthy
val exc = LIFT_MATCH (space_implode " " ["absrep_fun_aux: no map for type", quote s, "."])
val info = maps_lookup thy s handle NotFound => raise exc
in
list_comb (Const (#mapfun info, dummyT), fs)
end
fun get_const flag lthy _ qty =
(* FIXME: check here that the type-constructors of _ and qty are related *)
let
val thy = ProofContext.theory_of lthy
val qty_name = Long_Name.base_name (fst (dest_Type qty))
in
case flag of
absF => Const (Sign.full_bname thy ("abs_" ^ qty_name), dummyT)
| repF => Const (Sign.full_bname thy ("rep_" ^ qty_name), dummyT)
end
fun absrep_fun flag lthy (rty, qty) =
if rty = qty then mk_identity qty else
case (rty, qty) of
(Type ("fun", [ty1, ty2]), Type ("fun", [ty1', ty2'])) =>
let
val fs_ty1 = absrep_fun (negF flag) lthy (ty1, ty1')
val fs_ty2 = absrep_fun flag lthy (ty2, ty2')
in
absrep_fun_aux lthy "fun" [fs_ty1, fs_ty2]
end
| (Type (s, _), Type (s', [])) =>
if s = s'
then mk_identity qty
else get_const flag lthy rty qty
| (Type (s, tys), Type (s', tys')) =>
let
val args = map (absrep_fun flag lthy) (tys ~~ tys')
in
if s = s'
then absrep_fun_aux lthy s args
else mk_compose flag (get_const flag lthy rty qty, absrep_fun_aux lthy s args)
end
| (TFree x, TFree x') =>
if x = x'
then mk_identity qty
else raise (LIFT_MATCH "absrep_fun (frees)")
| (TVar _, TVar _) => raise (LIFT_MATCH "absrep_fun (vars)")
| _ => raise (LIFT_MATCH "absrep_fun (default)")
fun absrep_fun_chk flag lthy (rty, qty) =
absrep_fun flag lthy (rty, qty)
|> Syntax.check_term lthy
(*
Regularizing an rtrm means:
- Quantifiers over types that need lifting are replaced
by bounded quantifiers, for example:
All P ----> All (Respects R) P
where the aggregate relation R is given by the rty and qty;
- Abstractions over types that need lifting are replaced
by bounded abstractions, for example:
%x. P ----> Ball (Respects R) %x. P
- Equalities over types that need lifting are replaced by
corresponding equivalence relations, for example:
A = B ----> R A B
or
A = B ----> (R ===> R) A B
for more complicated types of A and B
*)
(* builds the aggregate equivalence relation *)
(* that will be the argument of Respects *)
fun mk_resp_arg lthy (rty, qty) =
let
val thy = ProofContext.theory_of lthy
in
if rty = qty
then HOLogic.eq_const rty
else
case (rty, qty) of
(Type (s, tys), Type (s', tys')) =>
if s = s'
then
let
val exc = LIFT_MATCH ("mk_resp_arg (no map function found for type " ^ s)
val map_info = maps_lookup thy s handle NotFound => raise exc
val args = map (mk_resp_arg lthy) (tys ~~ tys')
in
list_comb (Const (#relfun map_info, dummyT), args)
end
else
let
val SOME qinfo = quotdata_lookup_thy thy s'
(* FIXME: check in this case that the rty and qty *)
(* FIXME: correspond to each other *)
val (s, _) = dest_Const (#rel qinfo)
(* FIXME: the relation should only be the string *)
(* FIXME: and the type needs to be calculated as below; *)
(* FIXME: maybe one should actually have a term *)
(* FIXME: and one needs to force it to have this type *)
in
Const (s, rty --> rty --> @{typ bool})
end
| _ => HOLogic.eq_const dummyT
(* FIXME: check that the types correspond to each other? *)
end
val mk_babs = Const (@{const_name Babs}, dummyT)
val mk_ball = Const (@{const_name Ball}, dummyT)
val mk_bex = Const (@{const_name Bex}, dummyT)
val mk_resp = Const (@{const_name Respects}, dummyT)
(* - applies f to the subterm of an abstraction, *)
(* otherwise to the given term, *)
(* - used by regularize, therefore abstracted *)
(* variables do not have to be treated specially *)
fun apply_subt f (trm1, trm2) =
case (trm1, trm2) of
(Abs (x, T, t), Abs (_ , _, t')) => Abs (x, T, f (t, t'))
| _ => f (trm1, trm2)
(* the major type of All and Ex quantifiers *)
fun qnt_typ ty = domain_type (domain_type ty)
(* produces a regularized version of rtrm *)
(* *)
(* - the result still contains dummyTs *)
(* *)
(* - for regularisation we do not need any *)
(* special treatment of bound variables *)
fun regularize_trm lthy (rtrm, qtrm) =
case (rtrm, qtrm) of
(Abs (x, ty, t), Abs (_, ty', t')) =>
let
val subtrm = Abs(x, ty, regularize_trm lthy (t, t'))
in
if ty = ty' then subtrm
else mk_babs $ (mk_resp $ mk_resp_arg lthy (ty, ty')) $ subtrm
end
| (Const (@{const_name "All"}, ty) $ t, Const (@{const_name "All"}, ty') $ t') =>
let
val subtrm = apply_subt (regularize_trm lthy) (t, t')
in
if ty = ty' then Const (@{const_name "All"}, ty) $ subtrm
else mk_ball $ (mk_resp $ mk_resp_arg lthy (qnt_typ ty, qnt_typ ty')) $ subtrm
end
| (Const (@{const_name "Ex"}, ty) $ t, Const (@{const_name "Ex"}, ty') $ t') =>
let
val subtrm = apply_subt (regularize_trm lthy) (t, t')
in
if ty = ty' then Const (@{const_name "Ex"}, ty) $ subtrm
else mk_bex $ (mk_resp $ mk_resp_arg lthy (qnt_typ ty, qnt_typ ty')) $ subtrm
end
| (* equalities need to be replaced by appropriate equivalence relations *)
(Const (@{const_name "op ="}, ty), Const (@{const_name "op ="}, ty')) =>
if ty = ty' then rtrm
else mk_resp_arg lthy (domain_type ty, domain_type ty')
| (* in this case we just check whether the given equivalence relation is correct *)
(rel, Const (@{const_name "op ="}, ty')) =>
let
val exc = LIFT_MATCH "regularise (relation mismatch)"
val rel_ty = (fastype_of rel) handle TERM _ => raise exc
val rel' = mk_resp_arg lthy (domain_type rel_ty, domain_type ty')
in
if rel' aconv rel then rtrm else raise exc
end
| (_, Const _) =>
let
fun same_name (Const (s, T)) (Const (s', T')) = (s = s') (*andalso (T = T')*)
| same_name _ _ = false
(* TODO/FIXME: This test is not enough. *)
(* Why? *)
(* Because constants can have the same name but not be the same
constant. All overloaded constants have the same name but because
of different types they do differ.
This code will let one write a theorem where plus on nat is
matched to plus on int, even if the latter is defined differently.
This would result in hard to understand failures in injection and
cleaning. *)
(* cu: if I also test the type, then something else breaks *)
in
if same_name rtrm qtrm then rtrm
else
let
val thy = ProofContext.theory_of lthy
val qtrm_str = Syntax.string_of_term lthy qtrm
val exc1 = LIFT_MATCH ("regularize (constant " ^ qtrm_str ^ " not found)")
val exc2 = LIFT_MATCH ("regularize (constant " ^ qtrm_str ^ " mismatch)")
val rtrm' = (#rconst (qconsts_lookup thy qtrm)) handle NotFound => raise exc1
in
if Pattern.matches thy (rtrm', rtrm)
then rtrm else raise exc2
end
end
| (t1 $ t2, t1' $ t2') =>
(regularize_trm lthy (t1, t1')) $ (regularize_trm lthy (t2, t2'))
| (Bound i, Bound i') =>
if i = i' then rtrm
else raise (LIFT_MATCH "regularize (bounds mismatch)")
| _ =>
let
val rtrm_str = Syntax.string_of_term lthy rtrm
val qtrm_str = Syntax.string_of_term lthy qtrm
in
raise (LIFT_MATCH ("regularize failed (default: " ^ rtrm_str ^ "," ^ qtrm_str ^ ")"))
end
fun regularize_trm_chk lthy (rtrm, qtrm) =
regularize_trm lthy (rtrm, qtrm)
|> Syntax.check_term lthy
(*
Injection of Rep/Abs means:
For abstractions
:
* If the type of the abstraction needs lifting, then we add Rep/Abs
around the abstraction; otherwise we leave it unchanged.
For applications:
* If the application involves a bounded quantifier, we recurse on
the second argument. If the application is a bounded abstraction,
we always put an Re/Abs around it (since bounded abstractions
always need lifting). Otherwise we recurse on both arguments.
For constants:
* If the constant is (op =), we leave it always unchanged.
Otherwise the type of the constant needs lifting, we put
and Rep/Abs around it.
For free variables:
* We put aRep/Abs around it if the type needs lifting.
Vars case cannot occur.
*)
fun mk_repabs lthy (T, T') trm =
absrep_fun repF lthy (T, T') $ (absrep_fun absF lthy (T, T') $ trm)
(* bound variables need to be treated properly, *)
(* as the type of subterms needs to be calculated *)
fun inj_repabs_trm lthy (rtrm, qtrm) =
case (rtrm, qtrm) of
(Const (@{const_name "Ball"}, T) $ r $ t, Const (@{const_name "All"}, _) $ t') =>
Const (@{const_name "Ball"}, T) $ r $ (inj_repabs_trm lthy (t, t'))
| (Const (@{const_name "Bex"}, T) $ r $ t, Const (@{const_name "Ex"}, _) $ t') =>
Const (@{const_name "Bex"}, T) $ r $ (inj_repabs_trm lthy (t, t'))
| (Const (@{const_name "Babs"}, T) $ r $ t, t' as (Abs _)) =>
let
val rty = fastype_of rtrm
val qty = fastype_of qtrm
in
mk_repabs lthy (rty, qty) (Const (@{const_name "Babs"}, T) $ r $ (inj_repabs_trm lthy (t, t')))
end
| (Abs (x, T, t), Abs (x', T', t')) =>
let
val rty = fastype_of rtrm
val qty = fastype_of qtrm
val (y, s) = Term.dest_abs (x, T, t)
val (_, s') = Term.dest_abs (x', T', t')
val yvar = Free (y, T)
val result = Term.lambda_name (y, yvar) (inj_repabs_trm lthy (s, s'))
in
if rty = qty then result
else mk_repabs lthy (rty, qty) result
end
| (t $ s, t' $ s') =>
(inj_repabs_trm lthy (t, t')) $ (inj_repabs_trm lthy (s, s'))
| (Free (_, T), Free (_, T')) =>
if T = T' then rtrm
else mk_repabs lthy (T, T') rtrm
| (_, Const (@{const_name "op ="}, _)) => rtrm
| (_, Const (_, T')) =>
let
val rty = fastype_of rtrm
in
if rty = T' then rtrm
else mk_repabs lthy (rty, T') rtrm
end
| _ => raise (LIFT_MATCH "injection (default)")
fun inj_repabs_trm_chk lthy (rtrm, qtrm) =
inj_repabs_trm lthy (rtrm, qtrm)
|> Syntax.check_term lthy
end; (* structure *)