(* Nominal Termination
Author: Christian Urban
heavily based on the code of Alexander Krauss
(code forked on 18 July 2011)
Redefinition of the termination command
*)
signature NOMINAL_FUNCTION_TERMINATION =
sig
include NOMINAL_FUNCTION_DATA
val termination : bool -> term option -> local_theory -> Proof.state
val termination_cmd : bool -> string option -> local_theory -> Proof.state
end
structure Nominal_Function_Termination : NOMINAL_FUNCTION_TERMINATION =
struct
open Function_Lib
open Function_Common
open Nominal_Function_Common
val simp_attribs = map (Attrib.internal o K)
[Simplifier.simp_add,
Code.add_default_eqn_attribute,
Nitpick_Simps.add]
val eqvt_attrib = Attrib.internal (K Nominal_ThmDecls.eqvt_add)
fun prepare_termination_proof prep_term is_eqvt raw_term_opt lthy =
let
val term_opt = Option.map (prep_term lthy) raw_term_opt
val info = the (case term_opt of
SOME t => (import_function_data t lthy
handle Option.Option =>
error ("Not a function: " ^ quote (Syntax.string_of_term lthy t)))
| NONE => (import_last_function lthy handle Option.Option => error "Not a function"))
val { termination, fs, R, add_simps, case_names, psimps,
pinducts, defname, eqvts, ...} = info
val domT = domain_type (fastype_of R)
val goal = HOLogic.mk_Trueprop
(HOLogic.mk_all ("x", domT, mk_acc domT R $ Free ("x", domT)))
fun afterqed [[totality]] lthy =
let
val totality = Thm.close_derivation totality
val remove_domain_condition =
full_simplify (HOL_basic_ss addsimps [totality, @{thm True_implies_equals}])
val tsimps = map remove_domain_condition psimps
val tinducts = map remove_domain_condition pinducts
val teqvts = map remove_domain_condition eqvts
fun qualify n = Binding.name n
|> Binding.qualify true defname
in
lthy
|> add_simps I "simps" I simp_attribs tsimps
||>> Local_Theory.note ((qualify "eqvt", if is_eqvt then [eqvt_attrib] else []), teqvts)
||>> Local_Theory.note
((qualify "induct",
[Attrib.internal (K (Rule_Cases.case_names case_names))]),
tinducts)
|-> (fn ((simps, (_, eqvts)), (_, inducts)) => fn lthy =>
let val info' = { is_partial=false, defname=defname, add_simps=add_simps,
case_names=case_names, fs=fs, R=R, psimps=psimps, pinducts=pinducts,
simps=SOME simps, inducts=SOME inducts, termination=termination, eqvts=teqvts }
in
(info',
lthy
|> Local_Theory.declaration {syntax = false, pervasive = false}
(add_function_data o morph_function_data info')
|> Spec_Rules.add Spec_Rules.Equational (fs, tsimps))
end)
end
in
(goal, afterqed, termination)
end
fun gen_termination prep_term is_eqvt raw_term_opt lthy =
let
val (goal, afterqed, termination) = prepare_termination_proof prep_term is_eqvt raw_term_opt lthy
in
lthy
|> Proof_Context.note_thmss ""
[((Binding.empty, [Context_Rules.rule_del]), [([allI], [])])] |> snd
|> Proof_Context.note_thmss ""
[((Binding.empty, [Context_Rules.intro_bang (SOME 1)]), [([allI], [])])] |> snd
|> Proof_Context.note_thmss ""
[((Binding.name "termination", [Context_Rules.intro_bang (SOME 0)]),
[([Goal.norm_result termination], [])])] |> snd
|> Proof.theorem NONE (snd oo afterqed) [[(goal, [])]]
end
val termination = gen_termination Syntax.check_term
val termination_cmd = gen_termination Syntax.read_term
(* outer syntax *)
val option_parser =
(Scan.optional (Parse.$$$ "(" |-- Parse.!!!
((Parse.reserved "eqvt" >> K (true, true)) ||
(Parse.reserved "no_eqvt" >> K (true, false))) --| Parse.$$$ ")") (false, false))
val _ =
Outer_Syntax.local_theory_to_proof "termination" "prove termination of a recursive function"
Keyword.thy_goal
(option_parser -- Scan.option Parse.term >>
(fn ((is_nominal, is_eqvt), opt_trm) =>
if is_nominal then termination_cmd is_eqvt opt_trm else Function.termination_cmd opt_trm))
end