theory Lambda+ −
imports "../NewParser"+ −
begin+ −
+ −
atom_decl name+ −
+ −
nominal_datatype lam =+ −
Var "name"+ −
| App "lam" "lam"+ −
| Lam x::"name" l::"lam" bind_set x in l+ −
+ −
thm lam.fv+ −
thm lam.supp+ −
lemmas supp_fn' = lam.fv[simplified lam.supp]+ −
+ −
declare lam.perm[eqvt]+ −
+ −
+ −
section {* Strong Induction Principles*}+ −
+ −
(*+ −
Old way of establishing strong induction+ −
principles by chosing a fresh name.+ −
*)+ −
lemma+ −
fixes c::"'a::fs"+ −
assumes a1: "\<And>name c. P c (Var name)"+ −
and a2: "\<And>lam1 lam2 c. \<lbrakk>\<And>d. P d lam1; \<And>d. P d lam2\<rbrakk> \<Longrightarrow> P c (App lam1 lam2)"+ −
and a3: "\<And>name lam c. \<lbrakk>atom name \<sharp> c; \<And>d. P d lam\<rbrakk> \<Longrightarrow> P c (Lam name lam)"+ −
shows "P c lam"+ −
proof -+ −
have "\<And>p. P c (p \<bullet> lam)"+ −
apply(induct lam arbitrary: c rule: lam.induct)+ −
apply(perm_simp)+ −
apply(rule a1)+ −
apply(perm_simp)+ −
apply(rule a2)+ −
apply(assumption)+ −
apply(assumption)+ −
apply(subgoal_tac "\<exists>new::name. (atom new) \<sharp> (c, Lam (p \<bullet> name) (p \<bullet> lam))")+ −
defer+ −
apply(simp add: fresh_def)+ −
apply(rule_tac X="supp (c, Lam (p \<bullet> name) (p \<bullet> lam))" in obtain_at_base)+ −
apply(simp add: supp_Pair finite_supp)+ −
apply(blast)+ −
apply(erule exE)+ −
apply(rule_tac t="p \<bullet> Lam name lam" and + −
s="(((p \<bullet> name) \<leftrightarrow> new) + p) \<bullet> Lam name lam" in subst)+ −
apply(simp del: lam.perm)+ −
apply(subst lam.perm)+ −
apply(subst (2) lam.perm)+ −
apply(rule flip_fresh_fresh)+ −
apply(simp add: fresh_def)+ −
apply(simp only: supp_fn')+ −
apply(simp)+ −
apply(simp add: fresh_Pair)+ −
apply(simp)+ −
apply(rule a3)+ −
apply(simp add: fresh_Pair)+ −
apply(drule_tac x="((p \<bullet> name) \<leftrightarrow> new) + p" in meta_spec)+ −
apply(simp)+ −
done+ −
then have "P c (0 \<bullet> lam)" by blast+ −
then show "P c lam" by simp+ −
qed+ −
+ −
(* + −
New way of establishing strong induction+ −
principles by using a appropriate permutation.+ −
*)+ −
lemma+ −
fixes c::"'a::fs"+ −
assumes a1: "\<And>name c. P c (Var name)"+ −
and a2: "\<And>lam1 lam2 c. \<lbrakk>\<And>d. P d lam1; \<And>d. P d lam2\<rbrakk> \<Longrightarrow> P c (App lam1 lam2)"+ −
and a3: "\<And>name lam c. \<lbrakk>atom name \<sharp> c; \<And>d. P d lam\<rbrakk> \<Longrightarrow> P c (Lam name lam)"+ −
shows "P c lam"+ −
proof -+ −
have "\<And>p. P c (p \<bullet> lam)"+ −
apply(induct lam arbitrary: c rule: lam.induct)+ −
apply(perm_simp)+ −
apply(rule a1)+ −
apply(perm_simp)+ −
apply(rule a2)+ −
apply(assumption)+ −
apply(assumption)+ −
apply(subgoal_tac "\<exists>q. (q \<bullet> {p \<bullet> atom name}) \<sharp>* c \<and> supp (p \<bullet> Lam name lam) \<sharp>* q")+ −
apply(erule exE)+ −
apply(rule_tac t="p \<bullet> Lam name lam" and + −
s="q \<bullet> p \<bullet> Lam name lam" in subst)+ −
defer+ −
apply(simp)+ −
apply(rule a3)+ −
apply(simp add: eqvts fresh_star_def)+ −
apply(drule_tac x="q + p" in meta_spec)+ −
apply(simp)+ −
apply(rule at_set_avoiding2)+ −
apply(simp add: finite_supp)+ −
apply(simp add: finite_supp)+ −
apply(simp add: finite_supp)+ −
apply(perm_simp)+ −
apply(simp add: fresh_star_def fresh_def supp_fn')+ −
apply(rule supp_perm_eq)+ −
apply(simp)+ −
done+ −
then have "P c (0 \<bullet> lam)" by blast+ −
then show "P c lam" by simp+ −
qed+ −
+ −
section {* Typing *}+ −
+ −
nominal_datatype ty =+ −
TVar string+ −
| TFun ty ty+ −
+ −
notation+ −
TFun ("_ \<rightarrow> _") + −
+ −
declare ty.perm[eqvt]+ −
+ −
inductive+ −
valid :: "(name \<times> ty) list \<Rightarrow> bool"+ −
where+ −
"valid []"+ −
| "\<lbrakk>atom x \<sharp> Gamma; valid Gamma\<rbrakk> \<Longrightarrow> valid ((x, T)#Gamma)"+ −
+ −
inductive+ −
typing :: "(name\<times>ty) list \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60,60,60] 60) + −
where+ −
t_Var[intro]: "\<lbrakk>valid \<Gamma>; (x, T) \<in> set \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T"+ −
| t_App[intro]: "\<lbrakk>\<Gamma> \<turnstile> t1 : T1 \<rightarrow> T2; \<Gamma> \<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 : T2"+ −
| t_Lam[intro]: "\<lbrakk>atom x \<sharp> \<Gamma>; (x, T1) # \<Gamma> \<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam x t : T1 \<rightarrow> T2"+ −
+ −
equivariance valid+ −
equivariance typing+ −
+ −
thm valid.eqvt+ −
thm typing.eqvt+ −
thm eqvts+ −
thm eqvts_raw+ −
+ −
thm typing.induct[of "\<Gamma>" "t" "T", no_vars]+ −
+ −
lemma+ −
fixes c::"'a::fs"+ −
assumes a: "\<Gamma> \<turnstile> t : T" + −
and a1: "\<And>\<Gamma> x T c. \<lbrakk>valid \<Gamma>; (x, T) \<in> set \<Gamma>\<rbrakk> \<Longrightarrow> P c \<Gamma> (Var x) T"+ −
and a2: "\<And>\<Gamma> t1 T1 T2 t2 c. \<lbrakk>\<Gamma> \<turnstile> t1 : T1 \<rightarrow> T2; \<And>d. P d \<Gamma> t1 T1 \<rightarrow> T2; \<Gamma> \<turnstile> t2 : T1; \<And>d. P d \<Gamma> t2 T1\<rbrakk> + −
\<Longrightarrow> P c \<Gamma> (App t1 t2) T2"+ −
and a3: "\<And>x \<Gamma> T1 t T2 c. \<lbrakk>atom x \<sharp> c; atom x \<sharp> \<Gamma>; (x, T1) # \<Gamma> \<turnstile> t : T2; \<And>d. P d ((x, T1) # \<Gamma>) t T2\<rbrakk> + −
\<Longrightarrow> P c \<Gamma> (Lam x t) T1 \<rightarrow> T2"+ −
shows "P c \<Gamma> t T"+ −
proof -+ −
from a have "\<And>p c. P c (p \<bullet> \<Gamma>) (p \<bullet> t) (p \<bullet> T)"+ −
proof (induct)+ −
case (t_Var \<Gamma> x T p c)+ −
then show ?case+ −
apply -+ −
apply(perm_strict_simp)+ −
apply(rule a1)+ −
apply(drule_tac p="p" in permute_boolI)+ −
apply(perm_strict_simp add: permute_minus_cancel)+ −
apply(assumption)+ −
apply(rotate_tac 1)+ −
apply(drule_tac p="p" in permute_boolI)+ −
apply(perm_strict_simp add: permute_minus_cancel)+ −
apply(assumption)+ −
done+ −
next+ −
case (t_App \<Gamma> t1 T1 T2 t2 p c)+ −
then show ?case+ −
apply -+ −
apply(perm_strict_simp)+ −
apply(rule a2)+ −
apply(drule_tac p="p" in permute_boolI)+ −
apply(perm_strict_simp add: permute_minus_cancel)+ −
apply(assumption)+ −
apply(assumption)+ −
apply(rotate_tac 2)+ −
apply(drule_tac p="p" in permute_boolI)+ −
apply(perm_strict_simp add: permute_minus_cancel)+ −
apply(assumption)+ −
apply(assumption)+ −
done+ −
next+ −
case (t_Lam x \<Gamma> T1 t T2 p c)+ −
then show ?case+ −
apply -+ −
apply(subgoal_tac "\<exists>q. (q \<bullet> {p \<bullet> atom x}) \<sharp>* c \<and> + −
supp (p \<bullet> \<Gamma>, p \<bullet> Lam x t, p \<bullet> (T1 \<rightarrow> T2)) \<sharp>* q")+ −
apply(erule exE)+ −
apply(rule_tac t="p \<bullet> \<Gamma>" and s="(q + p) \<bullet> \<Gamma>" in subst)+ −
apply(simp only: permute_plus)+ −
apply(rule supp_perm_eq)+ −
apply(simp add: supp_Pair fresh_star_union)+ −
apply(rule_tac t="p \<bullet> Lam x t" and s="(q + p) \<bullet> Lam x t" in subst)+ −
apply(simp only: permute_plus)+ −
apply(rule supp_perm_eq)+ −
apply(simp add: supp_Pair fresh_star_union)+ −
apply(rule_tac t="p \<bullet> (T1 \<rightarrow> T2)" and s="(q + p) \<bullet> (T1 \<rightarrow> T2)" in subst)+ −
apply(simp only: permute_plus)+ −
apply(rule supp_perm_eq)+ −
apply(simp add: supp_Pair fresh_star_union)+ −
apply(simp (no_asm) only: eqvts)+ −
apply(rule a3)+ −
apply(simp only: eqvts permute_plus)+ −
apply(simp add: fresh_star_def)+ −
apply(drule_tac p="q + p" in permute_boolI)+ −
apply(perm_strict_simp add: permute_minus_cancel)+ −
apply(assumption)+ −
apply(rotate_tac 1)+ −
apply(drule_tac p="q + p" in permute_boolI)+ −
apply(perm_strict_simp add: permute_minus_cancel)+ −
apply(assumption)+ −
apply(drule_tac x="d" in meta_spec)+ −
apply(drule_tac x="q + p" in meta_spec)+ −
apply(perm_strict_simp add: permute_minus_cancel)+ −
apply(assumption)+ −
apply(rule at_set_avoiding2)+ −
apply(simp add: finite_supp)+ −
apply(simp add: finite_supp)+ −
apply(simp add: finite_supp)+ −
apply(rule_tac p="-p" in permute_boolE)+ −
apply(perm_strict_simp add: permute_minus_cancel)+ −
(* supplied by the user *)+ −
apply(simp add: fresh_star_prod)+ −
apply(simp add: fresh_star_def)+ −
sorry+ −
qed+ −
then have "P c (0 \<bullet> \<Gamma>) (0 \<bullet> t) (0 \<bullet> T)" .+ −
then show "P c \<Gamma> t T" by simp+ −
qed+ −
+ −
+ −
+ −
+ −
+ −
+ −
+ −
inductive+ −
tt :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)" + −
for r :: "('a \<Rightarrow> 'a \<Rightarrow> bool)"+ −
where+ −
aa: "tt r a a"+ −
| bb: "tt r a b ==> tt r a c"+ −
+ −
(* PROBLEM: derived eqvt-theorem does not conform with [eqvt]+ −
equivariance tt+ −
*)+ −
+ −
+ −
inductive+ −
alpha_lam_raw'+ −
where+ −
a1: "name = namea \<Longrightarrow> alpha_lam_raw' (Var_raw name) (Var_raw namea)"+ −
| a2: "\<lbrakk>alpha_lam_raw' lam_raw1 lam_raw1a; alpha_lam_raw' lam_raw2 lam_raw2a\<rbrakk> \<Longrightarrow>+ −
alpha_lam_raw' (App_raw lam_raw1 lam_raw2) (App_raw lam_raw1a lam_raw2a)"+ −
| a3: "\<exists>pi. ({atom name}, lam_raw) \<approx>gen alpha_lam_raw' fv_lam_raw pi ({atom namea}, lam_rawa) \<Longrightarrow>+ −
alpha_lam_raw' (Lam_raw name lam_raw) (Lam_raw namea lam_rawa)"+ −
+ −
equivariance alpha_lam_raw'+ −
+ −
thm eqvts_raw+ −
+ −
section {* size function *}+ −
+ −
lemma size_eqvt_raw:+ −
fixes t::"lam_raw"+ −
shows "size (pi \<bullet> t) = size t"+ −
apply (induct rule: lam_raw.inducts)+ −
apply simp_all+ −
done+ −
+ −
instantiation lam :: size + −
begin+ −
+ −
quotient_definition+ −
"size_lam :: lam \<Rightarrow> nat"+ −
is+ −
"size :: lam_raw \<Rightarrow> nat"+ −
+ −
lemma size_rsp:+ −
"alpha_lam_raw x y \<Longrightarrow> size x = size y"+ −
apply (induct rule: alpha_lam_raw.inducts)+ −
apply (simp_all only: lam_raw.size)+ −
apply (simp_all only: alphas)+ −
apply clarify+ −
apply (simp_all only: size_eqvt_raw)+ −
done+ −
+ −
lemma [quot_respect]:+ −
"(alpha_lam_raw ===> op =) size size"+ −
by (simp_all add: size_rsp)+ −
+ −
lemma [quot_preserve]:+ −
"(rep_lam ---> id) size = size"+ −
by (simp_all add: size_lam_def)+ −
+ −
instance+ −
by default+ −
+ −
end+ −
+ −
lemmas size_lam[simp] = + −
lam_raw.size(4)[quot_lifted]+ −
lam_raw.size(5)[quot_lifted]+ −
lam_raw.size(6)[quot_lifted]+ −
+ −
(* is this needed? *)+ −
lemma [measure_function]: + −
"is_measure (size::lam\<Rightarrow>nat)" + −
by (rule is_measure_trivial)+ −
+ −
section {* Matching *}+ −
+ −
definition+ −
MATCH :: "('c::pt \<Rightarrow> (bool * 'a::pt * 'b::pt)) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b"+ −
where+ −
"MATCH M d x \<equiv> if (\<exists>!r. \<exists>q. M q = (True, x, r)) then (THE r. \<exists>q. M q = (True, x, r)) else d"+ −
+ −
(*+ −
lemma MATCH_eqvt:+ −
shows "p \<bullet> (MATCH M d x) = MATCH (p \<bullet> M) (p \<bullet> d) (p \<bullet> x)"+ −
unfolding MATCH_def+ −
apply(perm_simp the_eqvt)+ −
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})+ −
apply(simp)+ −
thm eqvts_raw + −
apply(subst if_eqvt)+ −
apply(subst ex1_eqvt)+ −
apply(subst permute_fun_def)+ −
apply(subst ex_eqvt)+ −
apply(subst permute_fun_def)+ −
apply(subst eq_eqvt)+ −
apply(subst permute_fun_app_eq[where f="M"])+ −
apply(simp only: permute_minus_cancel)+ −
apply(subst permute_prod.simps)+ −
apply(subst permute_prod.simps)+ −
apply(simp only: permute_minus_cancel)+ −
apply(simp only: permute_bool_def)+ −
apply(simp)+ −
apply(subst ex1_eqvt)+ −
apply(subst permute_fun_def)+ −
apply(subst ex_eqvt)+ −
apply(subst permute_fun_def)+ −
apply(subst eq_eqvt)+ −
+ −
apply(simp only: eqvts)+ −
apply(simp)+ −
apply(subgoal_tac "(p \<bullet> (\<exists>!r. \<exists>q. M q = (True, x, r))) = (\<exists>!r. \<exists>q. (p \<bullet> M) q = (True, p \<bullet> x, r))")+ −
apply(drule sym)+ −
apply(simp)+ −
apply(rule impI)+ −
apply(simp add: perm_bool)+ −
apply(rule trans)+ −
apply(rule pt_the_eqvt[OF pta at])+ −
apply(assumption)+ −
apply(simp add: pt_ex_eqvt[OF pt at])+ −
apply(simp add: pt_eq_eqvt[OF ptb at])+ −
apply(rule cheat)+ −
apply(rule trans)+ −
apply(rule pt_ex1_eqvt)+ −
apply(rule pta)+ −
apply(rule at)+ −
apply(simp add: pt_ex_eqvt[OF pt at])+ −
apply(simp add: pt_eq_eqvt[OF ptb at])+ −
apply(subst pt_pi_rev[OF pta at])+ −
apply(subst pt_fun_app_eq[OF pt at])+ −
apply(subst pt_pi_rev[OF pt at])+ −
apply(simp)+ −
done+ −
+ −
lemma MATCH_cng:+ −
assumes a: "M1 = M2" "d1 = d2"+ −
shows "MATCH M1 d1 x = MATCH M2 d2 x"+ −
using a by simp+ −
+ −
lemma MATCH_eq:+ −
assumes a: "t = l x" "G x" "\<And>x'. t = l x' \<Longrightarrow> G x' \<Longrightarrow> r x' = r x"+ −
shows "MATCH (\<lambda>x. (G x, l x, r x)) d t = r x"+ −
using a+ −
unfolding MATCH_def+ −
apply(subst if_P)+ −
apply(rule_tac a="r x" in ex1I)+ −
apply(rule_tac x="x" in exI)+ −
apply(blast)+ −
apply(erule exE)+ −
apply(drule_tac x="q" in meta_spec)+ −
apply(auto)[1]+ −
apply(rule the_equality)+ −
apply(blast)+ −
apply(erule exE)+ −
apply(drule_tac x="q" in meta_spec)+ −
apply(auto)[1]+ −
done+ −
+ −
lemma MATCH_eq2:+ −
assumes a: "t = l x1 x2" "G x1 x2" "\<And>x1' x2'. t = l x1' x2' \<Longrightarrow> G x1' x2' \<Longrightarrow> r x1' x2' = r x1 x2"+ −
shows "MATCH (\<lambda>(x1,x2). (G x1 x2, l x1 x2, r x1 x2)) d t = r x1 x2"+ −
sorry+ −
+ −
lemma MATCH_neq:+ −
assumes a: "\<And>x. t = l x \<Longrightarrow> G x \<Longrightarrow> False"+ −
shows "MATCH (\<lambda>x. (G x, l x, r x)) d t = d"+ −
using a+ −
unfolding MATCH_def+ −
apply(subst if_not_P)+ −
apply(blast)+ −
apply(rule refl)+ −
done+ −
+ −
lemma MATCH_neq2:+ −
assumes a: "\<And>x1 x2. t = l x1 x2 \<Longrightarrow> G x1 x2 \<Longrightarrow> False"+ −
shows "MATCH (\<lambda>(x1,x2). (G x1 x2, l x1 x2, r x1 x2)) d t = d"+ −
using a+ −
unfolding MATCH_def+ −
apply(subst if_not_P)+ −
apply(auto)+ −
done+ −
*)+ −
+ −
ML {*+ −
fun mk_avoids ctxt params name set =+ −
let+ −
val (_, ctxt') = ProofContext.add_fixes+ −
(map (fn (s, T) => (Binding.name s, SOME T, NoSyn)) params) ctxt;+ −
fun mk s =+ −
let+ −
val t = Syntax.read_term ctxt' s;+ −
val t' = list_abs_free (params, t) |>+ −
funpow (length params) (fn Abs (_, _, t) => t)+ −
in (t', HOLogic.dest_setT (fastype_of t)) end+ −
handle TERM _ =>+ −
error ("Expression " ^ quote s ^ " to be avoided in case " ^+ −
quote name ^ " is not a set type");+ −
fun add_set p [] = [p]+ −
| add_set (t, T) ((u, U) :: ps) =+ −
if T = U then+ −
let val S = HOLogic.mk_setT T+ −
in (Const (@{const_name sup}, S --> S --> S) $ u $ t, T) :: ps+ −
end+ −
else (u, U) :: add_set (t, T) ps+ −
in+ −
(mk #> add_set) set + −
end;+ −
*}+ −
+ −
+ −
ML {* + −
writeln (commas (map (Syntax.string_of_term @{context} o fst) + −
(mk_avoids @{context} [] "t_Var" "{x}" []))) + −
*}+ −
+ −
+ −
ML {*+ −
+ −
fun prove_strong_ind (pred_name, avoids) ctxt = + −
Proof.theorem NONE (K I) [] ctxt+ −
+ −
local structure P = OuterParse and K = OuterKeyword in+ −
+ −
val _ =+ −
OuterSyntax.local_theory_to_proof "nominal_inductive"+ −
"proves strong induction theorem for inductive predicate involving nominal datatypes" K.thy_goal+ −
(P.xname -- (Scan.optional (P.$$$ "avoids" |-- P.enum1 "|" (P.name --+ −
(P.$$$ ":" |-- P.and_list1 P.term))) []) >> prove_strong_ind)+ −
+ −
end;+ −
+ −
*}+ −
+ −
(*+ −
nominal_inductive typing+ −
*)+ −
+ −
(* Substitution *)+ −
+ −
fun+ −
subst_var_raw :: "lam_raw \<Rightarrow> name \<Rightarrow> name \<Rightarrow> lam_raw"+ −
where+ −
"subst_var_raw (Var_raw x) y s = (if x=y then (Var_raw s) else (Var_raw x))"+ −
| "subst_var_raw (App_raw l r) y s = App_raw (subst_var_raw l y s) (subst_var_raw r y s)"+ −
| "subst_var_raw (Lam_raw x t) y s =+ −
(if x = y then Lam_raw x t else Lam_raw x (subst_var_raw t y s))"+ −
+ −
(* Should be true? *)+ −
lemma "(alpha_lam_raw ===> op = ===> op = ===> alpha_lam_raw) subst_var_raw subst_var_raw"+ −
proof (intro fun_relI, (simp, clarify))+ −
fix a b ba bb+ −
assume a: "alpha_lam_raw a b"+ −
show "alpha_lam_raw (subst_var_raw a ba bb) (subst_var_raw b ba bb)" using a+ −
apply (induct a b rule: alpha_lam_raw.induct)+ −
apply (simp add: equivp_reflp[OF lam_equivp])+ −
apply (simp add: alpha_lam_raw.intros)+ −
apply auto+ −
apply (rule_tac[!] alpha_lam_raw.intros)+ −
apply (rule_tac[!] x="p" in exI) (* Need to do better *)+ −
apply (simp_all add: alphas)+ −
apply clarify+ −
apply simp+ −
sorry+ −
qed+ −
+ −
fun+ −
subst_raw :: "lam_raw \<Rightarrow> name \<Rightarrow> lam_raw \<Rightarrow> lam_raw"+ −
where+ −
"subst_raw (Var_raw x) y s = (if x=y then s else (Var_raw x))"+ −
| "subst_raw (App_raw l r) y s = App_raw (subst_raw l y s) (subst_raw r y s)"+ −
| "subst_raw (Lam_raw x t) y s =+ −
(if x = y then t else+ −
(if atom x \<notin> (fv_lam_raw s) then (Lam_raw x (subst_raw t y s)) else undefined))"+ −
+ −
quotient_definition+ −
subst ("_ [ _ ::= _ ]" [100,100,100] 100)+ −
where+ −
"subst :: lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" is "subst_raw"+ −
+ −
lemmas fv_rsp = quot_respect(10)[simplified,rulify]+ −
+ −
lemma subst_rsp_pre1:+ −
assumes a: "alpha_lam_raw a b"+ −
shows "alpha_lam_raw (subst_raw a y c) (subst_raw b y c)"+ −
using a+ −
apply (induct a b arbitrary: c y rule: alpha_lam_raw.induct)+ −
apply (simp add: equivp_reflp[OF lam_equivp])+ −
apply (simp add: alpha_lam_raw.intros)+ −
apply (simp only: alphas)+ −
apply clarify+ −
apply (simp only: subst_raw.simps)+ −
sorry+ −
+ −
lemma subst_rsp_pre2:+ −
assumes a: "alpha_lam_raw a b"+ −
shows "alpha_lam_raw (subst_raw c y a) (subst_raw c y b)"+ −
sorry+ −
+ −
(* The below is definitely not true... *)+ −
lemma [quot_respect]:+ −
"(alpha_lam_raw ===> op = ===> alpha_lam_raw ===> alpha_lam_raw) subst_raw subst_raw"+ −
proof (intro fun_relI, simp)+ −
fix a b c d :: lam_raw+ −
fix y :: name+ −
assume a: "alpha_lam_raw a b"+ −
assume b: "alpha_lam_raw c d"+ −
have c: "alpha_lam_raw (subst_raw a y c) (subst_raw b y c)" using subst_rsp_pre1 a by simp+ −
then have d: "alpha_lam_raw (subst_raw b y c) (subst_raw b y d)" using subst_rsp_pre2 b by simp+ −
show "alpha_lam_raw (subst_raw a y c) (subst_raw b y d)"+ −
using c d equivp_transp[OF lam_equivp] by blast+ −
qed+ −
+ −
lemma simp3:+ −
"x \<noteq> y \<Longrightarrow> atom x \<notin> fv_lam_raw s \<Longrightarrow> subst_raw (Lam_raw x t) y s = Lam_raw x (subst_raw t y s)"+ −
by simp+ −
+ −
lemmas subst_simps = subst_raw.simps(1-2)[quot_lifted,no_vars]+ −
simp3[quot_lifted,simplified lam.supp,simplified fresh_def[symmetric], no_vars]+ −
+ −
end+ −
+ −
+ −
+ −