(* Title: Atoms
Authors: Brian Huffman, Christian Urban
Instantiations of concrete atoms
*)
theory Atoms
imports Nominal2_Base
begin
section {* @{const nat_of} is an example of a function
without finite support *}
lemma not_fresh_nat_of:
shows "\<not> a \<sharp> nat_of"
unfolding fresh_def supp_def
proof (clarsimp)
assume "finite {b. (a \<rightleftharpoons> b) \<bullet> nat_of \<noteq> nat_of}"
hence "finite ({a} \<union> {b. (a \<rightleftharpoons> b) \<bullet> nat_of \<noteq> nat_of})"
by simp
then obtain b where
b1: "b \<noteq> a" and
b2: "sort_of b = sort_of a" and
b3: "(a \<rightleftharpoons> b) \<bullet> nat_of = nat_of"
by (rule obtain_atom) auto
have "nat_of a = (a \<rightleftharpoons> b) \<bullet> (nat_of a)" by (simp add: permute_nat_def)
also have "\<dots> = ((a \<rightleftharpoons> b) \<bullet> nat_of) ((a \<rightleftharpoons> b) \<bullet> a)" by (simp add: permute_fun_app_eq)
also have "\<dots> = nat_of ((a \<rightleftharpoons> b) \<bullet> a)" using b3 by simp
also have "\<dots> = nat_of b" using b2 by simp
finally have "nat_of a = nat_of b" by simp
with b2 have "a = b" by (simp add: atom_components_eq_iff)
with b1 show "False" by simp
qed
lemma supp_nat_of:
shows "supp nat_of = UNIV"
using not_fresh_nat_of [unfolded fresh_def] by auto
section {* Manual instantiation of class @{text at}. *}
typedef (open) name = "{a. sort_of a = Sort ''name'' []}"
by (rule exists_eq_simple_sort)
instantiation name :: at
begin
definition
"p \<bullet> a = Abs_name (p \<bullet> Rep_name a)"
definition
"atom a = Rep_name a"
instance
apply (rule at_class)
apply (rule type_definition_name)
apply (rule atom_name_def)
apply (rule permute_name_def)
done
end
lemma sort_of_atom_name:
shows "sort_of (atom (a::name)) = Sort ''name'' []"
unfolding atom_name_def using Rep_name by simp
text {* Custom syntax for concrete atoms of type at *}
term "a:::name"
text {*
a:::name stands for (atom a) with a being of concrete atom
type name. The above lemma can therefore also be stated as
"sort_of (a:::name) = Sort ''name'' []"
This does not work for multi-sorted atoms.
*}
section {* Automatic instantiation of class @{text at}. *}
atom_decl name2
lemma sort_of_atom_name2:
"sort_of (atom (a::name2)) = Sort ''Atoms.name2'' []"
unfolding atom_name2_def
using Rep_name2
by simp
text {* example swappings *}
lemma
fixes a b::"atom"
assumes "sort_of a = sort_of b"
shows "(a \<rightleftharpoons> b) \<bullet> (a, b) = (b, a)"
using assms
by simp
lemma
fixes a b::"name2"
shows "(a \<leftrightarrow> b) \<bullet> (a, b) = (b, a)"
by simp
section {* An example for multiple-sort atoms *}
datatype ty =
TVar string
| Fun ty ty ("_ \<rightarrow> _")
primrec
sort_of_ty::"ty \<Rightarrow> atom_sort"
where
"sort_of_ty (TVar s) = Sort ''TVar'' [Sort s []]"
| "sort_of_ty (Fun ty1 ty2) = Sort ''Fun'' [sort_of_ty ty1, sort_of_ty ty2]"
lemma sort_of_ty_eq_iff:
shows "sort_of_ty x = sort_of_ty y \<longleftrightarrow> x = y"
apply(induct x arbitrary: y)
apply(case_tac [!] y)
apply(simp_all)
done
declare sort_of_ty.simps [simp del]
typedef (open) var = "{a. sort_of a \<in> range sort_of_ty}"
by (rule_tac x="Atom (sort_of_ty x) y" in exI, simp)
instantiation var :: at_base
begin
definition
"p \<bullet> a = Abs_var (p \<bullet> Rep_var a)"
definition
"atom a = Rep_var a"
instance
apply (rule at_base_class)
apply (rule type_definition_var)
apply (rule atom_var_def)
apply (rule permute_var_def)
done
end
text {* Constructor for variables. *}
definition
Var :: "nat \<Rightarrow> ty \<Rightarrow> var"
where
"Var x t = Abs_var (Atom (sort_of_ty t) x)"
lemma Var_eq_iff [simp]:
shows "Var x s = Var y t \<longleftrightarrow> x = y \<and> s = t"
unfolding Var_def
by (auto simp add: Abs_var_inject sort_of_ty_eq_iff)
lemma sort_of_atom_var [simp]:
"sort_of (atom (Var n ty)) = sort_of_ty ty"
unfolding atom_var_def Var_def
by (simp add: Abs_var_inverse)
lemma
assumes "\<alpha> \<noteq> \<beta>"
shows "(Var x \<alpha> \<leftrightarrow> Var y \<alpha>) \<bullet> (Var x \<alpha>, Var x \<beta>) = (Var y \<alpha>, Var x \<beta>)"
using assms by simp
text {* Projecting out the type component of a variable. *}
definition
ty_of :: "var \<Rightarrow> ty"
where
"ty_of x = inv sort_of_ty (sort_of (atom x))"
text {*
Functions @{term Var}/@{term ty_of} satisfy many of the same
properties as @{term Atom}/@{term sort_of}.
*}
lemma ty_of_Var [simp]:
shows "ty_of (Var x t) = t"
unfolding ty_of_def
unfolding sort_of_atom_var
apply (rule inv_f_f)
apply (simp add: inj_on_def sort_of_ty_eq_iff)
done
lemma ty_of_permute [simp]:
shows "ty_of (p \<bullet> x) = ty_of x"
unfolding ty_of_def
unfolding atom_eqvt [symmetric]
by simp
end