theory Let
imports "../Nominal2"
begin
atom_decl name
nominal_datatype trm =
Var "name"
| App "trm" "trm"
| Lam x::"name" t::"trm" bind x in t
| Let as::"assn" t::"trm" bind "bn as" in t
and assn =
ANil
| ACons "name" "trm" "assn"
binder
bn
where
"bn ANil = []"
| "bn (ACons x t as) = (atom x) # (bn as)"
print_theorems
thm alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.intros
thm bn_raw.simps
thm permute_bn_raw.simps
thm trm_assn.perm_bn_alpha
thm trm_assn.permute_bn
thm trm_assn.fv_defs
thm trm_assn.eq_iff
thm trm_assn.bn_defs
thm trm_assn.bn_inducts
thm trm_assn.perm_simps
thm trm_assn.induct
thm trm_assn.inducts
thm trm_assn.distinct
thm trm_assn.supp
thm trm_assn.fresh
thm trm_assn.exhaust
thm trm_assn.strong_exhaust
thm trm_assn.perm_bn_simps
lemma alpha_bn_inducts_raw[consumes 1]:
"\<lbrakk>alpha_bn_raw a b; P3 ANil_raw ANil_raw;
\<And>trm_raw trm_rawa assn_raw assn_rawa name namea.
\<lbrakk>alpha_trm_raw trm_raw trm_rawa; alpha_bn_raw assn_raw assn_rawa;
P3 assn_raw assn_rawa\<rbrakk>
\<Longrightarrow> P3 (ACons_raw name trm_raw assn_raw)
(ACons_raw namea trm_rawa assn_rawa)\<rbrakk> \<Longrightarrow> P3 a b"
by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\<lambda>x y. True" _ "\<lambda>x y. True", simplified]) auto
lemmas alpha_bn_inducts[consumes 1] = alpha_bn_inducts_raw[quot_lifted]
lemma alpha_bn_refl: "alpha_bn x x"
by (induct x rule: trm_assn.inducts(2))
(rule TrueI, auto simp add: trm_assn.eq_iff)
lemma alpha_bn_sym: "alpha_bn x y \<Longrightarrow> alpha_bn y x"
sorry
lemma alpha_bn_trans: "alpha_bn x y \<Longrightarrow> alpha_bn y z \<Longrightarrow> alpha_bn x z"
sorry
lemma bn_inj[rule_format]:
assumes a: "alpha_bn x y"
shows "bn x = bn y \<longrightarrow> x = y"
by (rule alpha_bn_inducts[OF a]) (simp_all add: trm_assn.bn_defs)
lemma bn_inj2:
assumes a: "alpha_bn x y"
shows "\<And>q r. (q \<bullet> bn x) = (r \<bullet> bn y) \<Longrightarrow> permute_bn q x = permute_bn r y"
using a
apply(induct rule: alpha_bn_inducts)
apply(simp add: trm_assn.perm_bn_simps)
apply(simp add: trm_assn.perm_bn_simps)
apply(simp add: trm_assn.bn_defs)
apply(simp add: atom_eqvt)
done
lemma Abs_lst_fcb2:
fixes as bs :: "atom list"
and x y :: "'b :: fs"
and c::"'c::fs"
assumes eq: "[as]lst. x = [bs]lst. y"
and fcb1: "(set as) \<sharp>* c \<Longrightarrow> (set as) \<sharp>* f as x c"
and fresh1: "set as \<sharp>* c"
and fresh2: "set bs \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
shows "f as x c = f bs y c"
proof -
have "supp (as, x, c) supports (f as x c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
then have fin1: "finite (supp (f as x c))"
by (auto intro: supports_finite simp add: finite_supp)
have "supp (bs, y, c) supports (f bs y c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
then have fin2: "finite (supp (f bs y c))"
by (auto intro: supports_finite simp add: finite_supp)
obtain q::"perm" where
fr1: "(q \<bullet> (set as)) \<sharp>* (x, c, f as x c, f bs y c)" and
fr2: "supp q \<sharp>* Abs_lst as x" and
inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)"
using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"]
fin1 fin2
by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp
also have "\<dots> = Abs_lst as x"
by (simp only: fr2 perm_supp_eq)
finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using eq by simp
then obtain r::perm where
qq1: "q \<bullet> x = r \<bullet> y" and
qq2: "q \<bullet> as = r \<bullet> bs" and
qq3: "supp r \<subseteq> (q \<bullet> (set as)) \<union> set bs"
apply(drule_tac sym)
apply(simp only: Abs_eq_iff2 alphas)
apply(erule exE)
apply(erule conjE)+
apply(drule_tac x="p" in meta_spec)
apply(simp add: set_eqvt)
apply(blast)
done
have "(set as) \<sharp>* f as x c"
apply(rule fcb1)
apply(rule fresh1)
done
then have "q \<bullet> ((set as) \<sharp>* f as x c)"
by (simp add: permute_bool_def)
then have "set (q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm1)
using inc fresh1 fr1
apply(auto simp add: fresh_star_def fresh_Pair)
done
then have "set (r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
then have "r \<bullet> ((set bs) \<sharp>* f bs y c)"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm2[symmetric])
using qq3 fresh2 fr1
apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
done
then have fcb2: "(set bs) \<sharp>* f bs y c" by (simp add: permute_bool_def)
have "f as x c = q \<bullet> (f as x c)"
apply(rule perm_supp_eq[symmetric])
using inc fcb1[OF fresh1] fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c"
apply(rule perm1)
using inc fresh1 fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
also have "\<dots> = r \<bullet> (f bs y c)"
apply(rule perm2[symmetric])
using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
also have "... = f bs y c"
apply(rule perm_supp_eq)
using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
finally show ?thesis by simp
qed
lemma Abs_lst1_fcb2:
fixes a b :: "atom"
and x y :: "'b :: fs"
and c::"'c :: fs"
assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)"
and fcb1: "a \<sharp> c \<Longrightarrow> a \<sharp> f a x c"
and fresh: "{a, b} \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c"
shows "f a x c = f b y c"
using e
apply(drule_tac Abs_lst_fcb2[where c="c" and f="\<lambda>(as::atom list) . f (hd as)"])
apply(simp_all)
using fcb1 fresh perm1 perm2
apply(simp_all add: fresh_star_def)
done
function
apply_assn2 :: "(trm \<Rightarrow> trm) \<Rightarrow> assn \<Rightarrow> assn"
where
"apply_assn2 f ANil = ANil"
| "apply_assn2 f (ACons x t as) = ACons x (f t) (apply_assn2 f as)"
apply(case_tac x)
apply(case_tac b rule: trm_assn.exhaust(2))
apply(simp_all)
apply(blast)
done
termination by lexicographic_order
lemma apply_assn_eqvt[eqvt]:
"p \<bullet> (apply_assn2 f a) = apply_assn2 (p \<bullet> f) (p \<bullet> a)"
apply(induct f a rule: apply_assn2.induct)
apply simp_all
apply(perm_simp)
apply rule
done
lemma
fixes x y :: "'a :: fs"
shows "[a # as]lst. x = [b # bs]lst. y \<Longrightarrow> [[a]]lst. [as]lst. x = [[b]]lst. [bs]lst. y"
apply (simp add: Abs_eq_iff)
apply (elim exE)
apply (rule_tac x="p" in exI)
apply (simp add: alphas)
apply clarify
apply rule
apply (simp add: supp_Abs)
apply blast
apply (simp add: supp_Abs fresh_star_def)
apply blast
done
lemma
assumes neq: "a \<noteq> b" "sort_of a = sort_of b"
shows "[[a]]lst. [[a]]lst. a = [[a]]lst. [[b]]lst. b \<and> [[a, a]]lst. a \<noteq> [[a, b]]lst. b"
apply (simp add: Abs1_eq_iff)
apply rule
apply (simp add: Abs_eq_iff alphas supp_atom fresh_star_def)
apply (rule_tac x="(a \<rightleftharpoons> b)" in exI)
apply (simp add: neq)
apply (simp add: Abs_eq_iff alphas supp_atom fresh_star_def neq)
done
nominal_primrec
subst :: "name \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm"
where
"subst s t (Var x) = (if (s = x) then t else (Var x))"
| "subst s t (App l r) = App (subst s t l) (subst s t r)"
| "atom v \<sharp> (s, t) \<Longrightarrow> subst s t (Lam v b) = Lam v (subst s t b)"
| "set (bn as) \<sharp>* (s, t) \<Longrightarrow> subst s t (Let as b) = Let (apply_assn2 (subst s t) as) (subst s t b)"
apply (simp only: eqvt_def subst_graph_def)
apply (rule, perm_simp, rule)
apply (rule TrueI)
apply (case_tac x)
apply (rule_tac y="c" and c="(a,b)" in trm_assn.strong_exhaust(1))
apply (auto simp add: fresh_star_def)[3]
apply (drule_tac x="assn" in meta_spec)
apply (simp add: Abs1_eq_iff alpha_bn_refl)
apply auto
apply (erule_tac c="(sa, ta)" in Abs_lst1_fcb2)
apply (simp add: Abs_fresh_iff)
apply (simp add: fresh_star_def)
apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def)[2]
apply (subgoal_tac "apply_assn2 (\<lambda>x2\<Colon>trm. subst_sumC (sa, ta, x2)) asa
= apply_assn2 (\<lambda>x2\<Colon>trm. subst_sumC (sa, ta, x2)) as")
prefer 2
apply (erule alpha_bn_inducts)
apply simp
apply (simp only: apply_assn2.simps)
apply simp
--"We know nothing about names; not true; but we can apply fcb2"
defer
apply (simp only: )
apply (erule_tac c="(sa, ta)" in Abs_lst_fcb2)
--"We again need induction for fcb assumption; this time true"
apply (induct_tac as rule: trm_assn.inducts(2))
apply (rule TrueI)+
apply (simp_all add: trm_assn.bn_defs fresh_star_def)[2]
apply (auto simp add: Abs_fresh_iff)[1]
apply assumption+
--"But eqvt is not going to be true as well"
apply (simp add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def trm_assn.fv_bn_eqvt)
apply (simp add: apply_assn_eqvt)
apply (drule sym)
apply (subgoal_tac "p \<bullet> (\<lambda>x2\<Colon>trm. subst_sumC (sa, ta, x2)) = (\<lambda>x2\<Colon>trm. subst_sumC (sa, ta, x2))")
apply (simp)
apply (erule alpha_bn_inducts)
apply simp
apply simp
apply (simp add: trm_assn.bn_defs)
--"Again we cannot relate 'namea' with 'p \<bullet> name'"
prefer 4
apply (erule alpha_bn_inducts)
apply simp_all[2]
oops
end