Quot/Nominal/Terms.thy
author Christian Urban <urbanc@in.tum.de>
Wed, 27 Jan 2010 14:05:42 +0100
changeset 963 caed1462c951
parent 957 080bd6f1607c
child 976 ab45b11803ca
permissions -rw-r--r--
completely ported

theory Terms
imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "../QuotMain" 
begin

atom_decl name

text {* primrec seems to be genarally faster than fun *}

section {*** lets with binding patterns ***}

datatype trm1 =
  Vr1 "name"
| Ap1 "trm1" "trm1"
| Lm1 "name" "trm1"        --"name is bound in trm1"
| Lt1 "bp" "trm1" "trm1"   --"all variables in bp are bound in the 2nd trm1"
and bp =
  BUnit
| BVr "name"
| BPr "bp" "bp"

(* to be given by the user *)
primrec 
  bv1
where
  "bv1 (BUnit) = {}"
| "bv1 (BVr x) = {atom x}"
| "bv1 (BPr bp1 bp2) = (bv1 bp1) \<union> (bv1 bp1)"

(* needs to be calculated by the package *)
primrec 
  fv_trm1 and fv_bp
where
  "fv_trm1 (Vr1 x) = {atom x}"
| "fv_trm1 (Ap1 t1 t2) = (fv_trm1 t1) \<union> (fv_trm1 t2)"
| "fv_trm1 (Lm1 x t) = (fv_trm1 t) - {atom x}"
| "fv_trm1 (Lt1 bp t1 t2) = (fv_trm1 t1) \<union> (fv_trm1 t2 - bv1 bp)"
| "fv_bp (BUnit) = {}"
| "fv_bp (BVr x) = {atom x}"
| "fv_bp (BPr b1 b2) = (fv_bp b1) \<union> (fv_bp b2)"

(* needs to be stated by the package *)
instantiation 
  trm1 and bp :: pt
begin

primrec
  permute_trm1 and permute_bp
where
  "permute_trm1 pi (Vr1 a) = Vr1 (pi \<bullet> a)"
| "permute_trm1 pi (Ap1 t1 t2) = Ap1 (permute_trm1 pi t1) (permute_trm1 pi t2)"
| "permute_trm1 pi (Lm1 a t) = Lm1 (pi \<bullet> a) (permute_trm1 pi t)"
| "permute_trm1 pi (Lt1 bp t1 t2) = Lt1 (permute_bp pi bp) (permute_trm1 pi t1) (permute_trm1 pi t2)"
| "permute_bp pi (BUnit) = BUnit"
| "permute_bp pi (BVr a) = BVr (pi \<bullet> a)"
| "permute_bp pi (BPr bp1 bp2) = BPr (permute_bp pi bp1) (permute_bp pi bp2)"

lemma pt_trm1_bp_zero:
  fixes t::trm1
  and   b::bp
  shows "0 \<bullet> t = t"
  and   "0 \<bullet> b = b"
apply(induct t and b rule: trm1_bp.inducts)
apply(simp_all)
done

lemma pt_trm1_bp_plus:
  fixes t::trm1
  and   b::bp
  shows "((p + q) \<bullet> t) = p \<bullet> (q \<bullet> t)"
  and   "((p + q) \<bullet> b) = p \<bullet> (q \<bullet> b)"
apply(induct t and b rule: trm1_bp.inducts)
apply(simp_all)
done

instance
apply default
apply(simp_all add: pt_trm1_bp_zero pt_trm1_bp_plus)
done

end

inductive
  alpha1 :: "trm1 \<Rightarrow> trm1 \<Rightarrow> bool" ("_ \<approx>1 _" [100, 100] 100)
where
  a1: "a = b \<Longrightarrow> (Vr1 a) \<approx>1 (Vr1 b)"
| a2: "\<lbrakk>t1 \<approx>1 t2; s1 \<approx>1 s2\<rbrakk> \<Longrightarrow> Ap1 t1 s1 \<approx>1 Ap1 t2 s2"
| a3: "\<exists>pi. (fv_trm1 t - {atom a} = fv_trm1 s - {atom b} \<and> 
            (fv_trm1 t - {atom a})\<sharp>* pi \<and> 
            (pi \<bullet> t) \<approx>1 s \<and> (pi \<bullet> a) = b)
       \<Longrightarrow> Lm1 a t \<approx>1 Lm1 b s"
| a4: "\<exists>pi.(t1 \<approx>1 t2 \<and>
           (fv_trm1 s1 - fv_bp b1 = fv_trm1 s2 - fv_bp b2) \<and>
           (fv_trm1 s1 - fv_bp b1) \<sharp>* pi \<and>
           (pi \<bullet> s1 = s2)                    (* Optional: \<and> (pi \<bullet> b1 = b2) *)) 
       \<Longrightarrow> Lt1 b1 t1 s1 \<approx>1 Lt1 b2 t2 s2"

lemma alpha1_equivp: "equivp alpha1" 
  sorry

quotient_type qtrm1 = trm1 / alpha1
  by (rule alpha1_equivp)


section {*** lets with single assignments ***}

datatype trm2 =
  Vr2 "name"
| Ap2 "trm2" "trm2"
| Lm2 "name" "trm2"
| Lt2 "assign" "trm2"
and assign =
  As "name" "trm2"

(* to be given by the user *)
primrec 
  bv2
where
  "bv2 (As x t) = {atom x}"

(* needs to be calculated by the package *)
primrec
  fv_trm2 and fv_assign
where
  "fv_trm2 (Vr2 x) = {atom x}"
| "fv_trm2 (Ap2 t1 t2) = (fv_trm2 t1) \<union> (fv_trm2 t2)"
| "fv_trm2 (Lm2 x t) = (fv_trm2 t) - {atom x}"
| "fv_trm2 (Lt2 as t) = (fv_trm2 t - bv2 as) \<union> (fv_assign as)"
| "fv_assign (As x t) = (fv_trm2 t)"

(* needs to be stated by the package *)
instantiation 
  trm2 and assign :: pt
begin

primrec
  permute_trm2 and permute_assign
where
  "permute_trm2 pi (Vr2 a) = Vr2 (pi \<bullet> a)"
| "permute_trm2 pi (Ap2 t1 t2) = Ap2 (permute_trm2 pi t1) (permute_trm2 pi t2)"
| "permute_trm2 pi (Lm2 a t) = Lm2 (pi \<bullet> a) (permute_trm2 pi t)"
| "permute_trm2 pi (Lt2 as t) = Lt2 (permute_assign pi as) (permute_trm2 pi t)"
| "permute_assign pi (As a t) = As (pi \<bullet> a) (permute_trm2 pi t)"

lemma pt_trm2_assign_zero:
  fixes t::trm2
  and   b::assign
  shows "0 \<bullet> t = t"
  and   "0 \<bullet> b = b"
apply(induct t and b rule: trm2_assign.inducts)
apply(simp_all)
done

lemma pt_trm2_assign_plus:
  fixes t::trm2
  and   b::assign
  shows "((p + q) \<bullet> t) = p \<bullet> (q \<bullet> t)"
  and   "((p + q) \<bullet> b) = p \<bullet> (q \<bullet> b)"
apply(induct t and b rule: trm2_assign.inducts)
apply(simp_all)
done

instance
apply default
apply(simp_all add: pt_trm2_assign_zero pt_trm2_assign_plus)
done


end

inductive
  alpha2 :: "trm2 \<Rightarrow> trm2 \<Rightarrow> bool" ("_ \<approx>2 _" [100, 100] 100)
where
  a1: "a = b \<Longrightarrow> (Vr2 a) \<approx>2 (Vr2 b)"
| a2: "\<lbrakk>t1 \<approx>2 t2; s1 \<approx>2 s2\<rbrakk> \<Longrightarrow> Ap2 t1 s1 \<approx>2 Ap2 t2 s2"
| a3: "\<exists>pi. (fv_trm2 t - {atom a} = fv_trm2 s - {atom b} \<and> 
            (fv_trm2 t - {atom a})\<sharp>* pi \<and> 
            (pi \<bullet> t) \<approx>2 s \<and> 
            (pi \<bullet> a) = b)
       \<Longrightarrow> Lm2 a t \<approx>2 Lm2 b s"
| a4: "\<exists>pi. (
         fv_trm2 t1 - fv_assign b1 = fv_trm2 t2 - fv_assign b2 \<and>
         (fv_trm2 t1 - fv_assign b1) \<sharp>* pi \<and>
         pi \<bullet> t1 = t2       (* \<and> (pi \<bullet> b1 = b2) *)
       ) \<Longrightarrow> Lt2 b1 t1 \<approx>2 Lt2 b2 t2"

lemma alpha2_equivp: "equivp alpha2" 
  sorry

quotient_type qtrm2 = trm2 / alpha2
  by (rule alpha2_equivp)

section {*** lets with many assignments ***}

datatype trm3 =
  Vr3 "name"
| Ap3 "trm3" "trm3"
| Lm3 "name" "trm3"
| Lt3 "assigns" "trm3"
and assigns =
  ANil
| ACons "name" "trm3" "assigns"

(* to be given by the user *)
primrec 
  bv3
where
  "bv3 ANil = {}"
| "bv3 (ACons x t as) = {atom x} \<union> (bv3 as)"

primrec
  fv_trm3 and fv_assigns
where
  "fv_trm3 (Vr3 x) = {atom x}"
| "fv_trm3 (Ap3 t1 t2) = (fv_trm3 t1) \<union> (fv_trm3 t2)"
| "fv_trm3 (Lm3 x t) = (fv_trm3 t) - {atom x}"
| "fv_trm3 (Lt3 as t) = (fv_trm3 t - bv3 as) \<union> (fv_assigns as)"
| "fv_assigns (ANil) = {}"
| "fv_assigns (ACons x t as) = (fv_trm3 t) \<union> (fv_assigns as)"

(* needs to be stated by the package *)
instantiation
 trm3 and assigns :: pt
begin

primrec
  permute_trm3 and permute_assigns
where
  "permute_trm3 pi (Vr3 a) = Vr3 (pi \<bullet> a)"
| "permute_trm3 pi (Ap3 t1 t2) = Ap3 (permute_trm3 pi t1) (permute_trm3 pi t2)"
| "permute_trm3 pi (Lm3 a t) = Lm3 (pi \<bullet> a) (permute_trm3 pi t)"
| "permute_trm3 pi (Lt3 as t) = Lt3 (permute_assigns pi as) (permute_trm3 pi t)"
| "permute_assigns pi (ANil) = ANil"
| "permute_assigns pi (ACons a t as) = ACons (pi \<bullet> a) (permute_trm3 pi t) (permute_assigns pi as)"

lemma pt_trm3_assigns_zero:
  fixes t::trm3
  and   b::assigns
  shows "0 \<bullet> t = t"
  and   "0 \<bullet> b = b"
apply(induct t and b rule: trm3_assigns.inducts)
apply(simp_all)
done

lemma pt_trm3_assigns_plus:
  fixes t::trm3
  and   b::assigns
  shows "((p + q) \<bullet> t) = p \<bullet> (q \<bullet> t)"
  and   "((p + q) \<bullet> b) = p \<bullet> (q \<bullet> b)"
apply(induct t and b rule: trm3_assigns.inducts)
apply(simp_all)
done

instance
apply default
apply(simp_all add: pt_trm3_assigns_zero pt_trm3_assigns_plus)
done


end

inductive
  alpha3 :: "trm3 \<Rightarrow> trm3 \<Rightarrow> bool" ("_ \<approx>3 _" [100, 100] 100)
where
  a1: "a = b \<Longrightarrow> (Vr3 a) \<approx>3 (Vr3 b)"
| a2: "\<lbrakk>t1 \<approx>3 t2; s1 \<approx>3 s2\<rbrakk> \<Longrightarrow> Ap3 t1 s1 \<approx>3 Ap3 t2 s2"
| a3: "\<exists>pi. (fv_trm3 t - {atom a} = fv_trm3 s - {atom b} \<and> 
             (fv_trm3 t - {atom a})\<sharp>* pi \<and> 
             (pi \<bullet> t) \<approx>3 s \<and> 
             (pi \<bullet> a) = b)
       \<Longrightarrow> Lm3 a t \<approx>3 Lm3 b s"
| a4: "\<exists>pi. (
         fv_trm3 t1 - fv_assigns b1 = fv_trm3 t2 - fv_assigns b2 \<and>
         (fv_trm3 t1 - fv_assigns b1) \<sharp>* pi \<and>
         pi \<bullet> t1 = t2      (* \<and> (pi \<bullet> b1 = b2)  *)
       ) \<Longrightarrow> Lt3 b1 t1 \<approx>3 Lt3 b2 t2"

lemma alpha3_equivp: "equivp alpha3" 
  sorry

quotient_type qtrm3 = trm3 / alpha3
  by (rule alpha3_equivp)


section {*** lam with indirect list recursion ***}

datatype trm4 =
  Vr4 "name"
| Ap4 "trm4" "trm4 list"
| Lm4 "name" "trm4"

thm trm4.recs

primrec
  fv_trm4 and fv_trm4_list
where
  "fv_trm4 (Vr4 x) = {atom x}"
| "fv_trm4 (Ap4 t ts) = (fv_trm4 t) \<union> (fv_trm4_list ts)"
| "fv_trm4 (Lm4 x t) = (fv_trm4 t) - {atom x}"
| "fv_trm4_list ([]) = {}"
| "fv_trm4_list (t#ts) = (fv_trm4 t) \<union> (fv_trm4_list ts)"


(* needs to be stated by the package *)
(* there cannot be a clause for lists, as *) 
(* permuteutations are  already defined in Nominal (also functions, options, and so on) *)
instantiation
  trm4 :: pt
begin

(* does not work yet *)
primrec
  permute_trm4  and permute_trm4_list
where
  "permute_trm4 pi (Vr4 a) = Vr4 (pi \<bullet> a)"
| "permute_trm4 pi (Ap4 t ts) = Ap4 (permute_trm4 pi t) (permute_trm4_list pi ts)"
| "permute_trm4 pi (Lm4 a t) = Lm4 (pi \<bullet> a) (permute_trm4 pi t)"
| "permute_trm4_list pi ([]) = []"
| "permute_trm4_list pi (t#ts) = (permute_trm4 pi t) # (permute_trm4_list pi ts)"

lemma pt_trm4_list_zero:
  fixes t::trm4
  and   ts::"trm4 list"
  shows "0 \<bullet> t = t"
  and   "permute_trm4_list 0 ts = ts"
apply(induct t and ts rule: trm4.inducts)
apply(simp_all)
done

lemma pt_trm4_list_plus:
  fixes t::trm4
  and   ts::"trm4 list"
  shows "((p + q) \<bullet> t) = p \<bullet> (q \<bullet> t)"
  and   "(permute_trm4_list (p + q) ts) = permute_trm4_list p (permute_trm4_list q ts)"
apply(induct t and ts rule: trm4.inducts)
apply(simp_all)
done


instance
apply(default)
apply(simp_all add: pt_trm4_list_zero pt_trm4_list_plus)
done

end

(* "repairing" of the permute function *)
lemma repaired:
  fixes ts::"trm4 list"
  shows "permute_trm4_list p ts = p \<bullet> ts"
  apply(induct ts)
  apply(simp_all)
  done

thm permute_trm4_permute_trm4_list.simps[simplified repaired]

inductive
    alpha4 :: "trm4 \<Rightarrow> trm4 \<Rightarrow> bool" ("_ \<approx>4 _" [100, 100] 100)
and alpha4list :: "trm4 list \<Rightarrow> trm4 list \<Rightarrow> bool" ("_ \<approx>4list _" [100, 100] 100) 
where
  a1: "a = b \<Longrightarrow> (Vr4 a) \<approx>4 (Vr4 b)"
| a2: "\<lbrakk>t1 \<approx>4 t2; s1 \<approx>4list s2\<rbrakk> \<Longrightarrow> Ap4 t1 s1 \<approx>4 Ap4 t2 s2"
| a4: "\<exists>pi. (fv_trm4 t - {atom a} = fv_trm4 s - {atom b} \<and> 
            (fv_trm4 t - {atom a})\<sharp>* pi \<and> 
            (pi \<bullet> t) \<approx>4 s \<and> 
            (pi \<bullet> a) = b)
       \<Longrightarrow> Lm4 a t \<approx>4 Lm4 b s"
| a5: "[] \<approx>4list []"
| a6: "\<lbrakk>t \<approx>4 s; ts \<approx>4list ss\<rbrakk> \<Longrightarrow> (t#ts) \<approx>4list (s#ss)"

lemma alpha4_equivp: "equivp alpha4" sorry
lemma alpha4list_equivp: "equivp alpha4list" sorry

quotient_type 
  qtrm4 = trm4 / alpha4 and
  qtrm4list = "trm4 list" / alpha4list
  by (simp_all add: alpha4_equivp alpha4list_equivp)



end