Quot/Nominal/LFex.thy
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Wed, 24 Feb 2010 10:08:54 +0100
changeset 1236 ca3c69545a78
parent 1234 1240d5eb275d
child 1237 38eb2bd9ad3a
permissions -rw-r--r--
LF renaming part 2 (proper fv functions)

theory LFex
imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs" "Perm" "Fv"
begin

atom_decl name
atom_decl ident

datatype rkind =
    Type
  | KPi "rty" "name" "rkind"
and rty =
    TConst "ident"
  | TApp "rty" "rtrm"
  | TPi "rty" "name" "rty"
and rtrm =
    Const "ident"
  | Var "name"
  | App "rtrm" "rtrm"
  | Lam "rty" "name" "rtrm"


instantiation rkind and rty and rtrm :: pt
begin

primrec
    permute_rkind
and permute_rty
and permute_rtrm
where
  "permute_rkind pi Type = Type"
| "permute_rkind pi (KPi t n k) = KPi (permute_rty pi t) (pi \<bullet> n) (permute_rkind pi k)"
| "permute_rty pi (TConst i) = TConst (pi \<bullet> i)"
| "permute_rty pi (TApp A M) = TApp (permute_rty pi A) (permute_rtrm pi M)"
| "permute_rty pi (TPi A x B) = TPi (permute_rty pi A) (pi \<bullet> x) (permute_rty pi B)"
| "permute_rtrm pi (Const i) = Const (pi \<bullet> i)"
| "permute_rtrm pi (Var x) = Var (pi \<bullet> x)"
| "permute_rtrm pi (App M N) = App (permute_rtrm pi M) (permute_rtrm pi N)"
| "permute_rtrm pi (Lam A x M) = Lam (permute_rty pi A) (pi \<bullet> x) (permute_rtrm pi M)"

lemma rperm_zero_ok:
  "0 \<bullet> (x :: rkind) = x"
  "0 \<bullet> (y :: rty) = y"
  "0 \<bullet> (z :: rtrm) = z"
apply(induct x and y and z rule: rkind_rty_rtrm.inducts)
apply(simp_all)
done

lemma rperm_plus_ok:
 "(p + q) \<bullet> (x :: rkind) = p \<bullet> q \<bullet> x"
 "(p + q) \<bullet> (y :: rty) = p \<bullet> q \<bullet> y"
 "(p + q) \<bullet> (z :: rtrm) = p \<bullet> q \<bullet> z"
apply(induct x and y and z rule: rkind_rty_rtrm.inducts)
apply(simp_all)
done

instance
apply default
apply (simp_all only:rperm_zero_ok rperm_plus_ok)
done

end

(*
setup {* snd o define_raw_perms ["rkind", "rty", "rtrm"] ["LFex.rkind", "LFex.rty", "LFex.rtrm"] *}
local_setup {*
  snd o define_fv_alpha "LFex.rkind"
  [[ [], [[], [(NONE, 1)], [(NONE, 1)]] ],
   [ [[]], [[], []], [[], [(NONE, 1)], [(NONE, 1)]] ],
   [ [[]], [[]], [[], []], [[], [(NONE, 1)], [(NONE, 1)]]]] *}
notation
    alpha_rkind  ("_ \<approx>ki _" [100, 100] 100)
and alpha_rty    ("_ \<approx>rty _" [100, 100] 100)
and alpha_rtrm   ("_ \<approx>tr _" [100, 100] 100)
thm fv_rkind_fv_rty_fv_rtrm.simps alpha_rkind_alpha_rty_alpha_rtrm.intros
local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alphas_inj}, []), (build_alpha_inj @{thms alpha_rkind_alpha_rty_alpha_rtrm.intros} @{thms rkind.distinct rty.distinct rtrm.distinct rkind.inject rty.inject rtrm.inject} @{thms alpha_rkind.cases alpha_rty.cases alpha_rtrm.cases} ctxt)) ctxt)) *}
thm alphas_inj

lemma alphas_eqvt:
  "t1 \<approx>ki s1 \<Longrightarrow> (pi \<bullet> t1) \<approx>ki (pi \<bullet> s1)"
  "t2 \<approx>rty s2 \<Longrightarrow> (pi \<bullet> t2) \<approx>rty (pi \<bullet> s2)"
  "t3 \<approx>tr s3 \<Longrightarrow> (pi \<bullet> t3) \<approx>tr (pi \<bullet> s3)"
sorry

local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alphas_equivp}, []),
  (build_equivps [@{term alpha_rkind}, @{term alpha_rty}, @{term alpha_rtrm}]
     @{thm rkind_rty_rtrm.induct} @{thm alpha_rkind_alpha_rty_alpha_rtrm.induct} 
     @{thms rkind.inject rty.inject rtrm.inject} @{thms alphas_inj}
     @{thms rkind.distinct rty.distinct rtrm.distinct}
     @{thms alpha_rkind.cases alpha_rty.cases alpha_rtrm.cases}
     @{thms alphas_eqvt} ctxt)) ctxt)) *}
thm alphas_equivp
*)

primrec
    fv_rkind :: "rkind \<Rightarrow> atom set"
and fv_rty   :: "rty \<Rightarrow> atom set"
and fv_rtrm  :: "rtrm \<Rightarrow> atom set"
where
  "fv_rkind (Type) = {}"
| "fv_rkind (KPi A x K) = (fv_rty A) \<union> ((fv_rkind K) - {atom x})"
| "fv_rty (TConst i) = {atom i}"
| "fv_rty (TApp A M) = (fv_rty A) \<union> (fv_rtrm M)"
| "fv_rty (TPi A x B) = (fv_rty A) \<union> ((fv_rty B) - {atom x})"
| "fv_rtrm (Const i) = {atom i}"
| "fv_rtrm (Var x) = {atom x}"
| "fv_rtrm (App M N) = (fv_rtrm M) \<union> (fv_rtrm N)"
| "fv_rtrm (Lam A x M) = (fv_rty A) \<union> ((fv_rtrm M) - {atom x})"

inductive
    arkind :: "rkind \<Rightarrow> rkind \<Rightarrow> bool" ("_ \<approx>ki _" [100, 100] 100)
and arty   :: "rty \<Rightarrow> rty \<Rightarrow> bool"     ("_ \<approx>rty _" [100, 100] 100)
and artrm  :: "rtrm \<Rightarrow> rtrm \<Rightarrow> bool"   ("_ \<approx>tr _" [100, 100] 100)
where
  a1: "(Type) \<approx>ki (Type)"
| a2: "\<lbrakk>A \<approx>rty A'; \<exists>pi. (({atom a}, K) \<approx>gen arkind fv_rkind pi ({atom b}, K'))\<rbrakk> \<Longrightarrow> (KPi A a K) \<approx>ki (KPi A' b K')"
| a3: "i = j \<Longrightarrow> (TConst i) \<approx>rty (TConst j)"
| a4: "\<lbrakk>A \<approx>rty A'; M \<approx>tr M'\<rbrakk> \<Longrightarrow> (TApp A M) \<approx>rty (TApp A' M')"
| a5: "\<lbrakk>A \<approx>rty A'; \<exists>pi. (({atom a}, B) \<approx>gen arty fv_rty pi ({atom b}, B'))\<rbrakk> \<Longrightarrow> (TPi A a B) \<approx>rty (TPi A' b B')"
| a6: "i = j \<Longrightarrow> (Const i) \<approx>tr (Const j)"
| a7: "x = y \<Longrightarrow> (Var x) \<approx>tr (Var y)"
| a8: "\<lbrakk>M \<approx>tr M'; N \<approx>tr N'\<rbrakk> \<Longrightarrow> (App M N) \<approx>tr (App M' N')"
| a9: "\<lbrakk>A \<approx>rty A'; \<exists>pi. (({atom a}, M) \<approx>gen artrm fv_rtrm pi ({atom b}, M'))\<rbrakk> \<Longrightarrow> (Lam A a M) \<approx>tr (Lam A' b M')"

lemma arkind_arty_artrm_inj:
  "(Type) \<approx>ki (Type) = True"
  "((KPi A a K) \<approx>ki (KPi A' b K')) = ((A \<approx>rty A') \<and> (\<exists>pi. ({atom a}, K) \<approx>gen arkind fv_rkind pi ({atom b}, K')))"
  "(TConst i) \<approx>rty (TConst j) = (i = j)"
  "(TApp A M) \<approx>rty (TApp A' M') = (A \<approx>rty A' \<and> M \<approx>tr M')"
  "((TPi A a B) \<approx>rty (TPi A' b B')) = ((A \<approx>rty A') \<and> (\<exists>pi. (({atom a}, B) \<approx>gen arty fv_rty pi ({atom b}, B'))))"
  "(Const i) \<approx>tr (Const j) = (i = j)"
  "(Var x) \<approx>tr (Var y) = (x = y)"
  "(App M N) \<approx>tr (App M' N') = (M \<approx>tr M' \<and> N \<approx>tr N')"
  "((Lam A a M) \<approx>tr (Lam A' b M')) = ((A \<approx>rty A') \<and> (\<exists>pi. (({atom a}, M) \<approx>gen artrm fv_rtrm pi ({atom b}, M'))))"
apply -
apply (simp add: arkind_arty_artrm.intros)

apply rule apply (erule arkind.cases) apply simp apply blast
apply (simp only: arkind_arty_artrm.intros)

apply rule apply (erule arty.cases) apply simp apply simp apply simp
apply (simp only: arkind_arty_artrm.intros)

apply rule apply (erule arty.cases) apply simp apply simp apply simp
apply (simp only: arkind_arty_artrm.intros)

apply rule apply (erule arty.cases) apply simp apply simp apply blast
apply (simp only: arkind_arty_artrm.intros)

apply rule apply (erule artrm.cases) apply simp apply simp apply simp apply blast
apply (simp only: arkind_arty_artrm.intros)

apply rule apply (erule artrm.cases) apply simp apply simp apply simp apply blast
apply (simp only: arkind_arty_artrm.intros)

apply rule apply (erule artrm.cases) apply simp apply simp apply simp apply blast
apply (simp only: arkind_arty_artrm.intros)

apply rule apply (erule artrm.cases) apply simp apply simp apply simp apply blast
apply (simp only: arkind_arty_artrm.intros)
done

lemma rfv_eqvt[eqvt]:
  "((pi\<bullet>fv_rkind t1) = fv_rkind (pi\<bullet>t1))"
  "((pi\<bullet>fv_rty t2) = fv_rty (pi\<bullet>t2))"
  "((pi\<bullet>fv_rtrm t3) = fv_rtrm (pi\<bullet>t3))"
apply(induct t1 and t2 and t3 rule: rkind_rty_rtrm.inducts)
apply(simp_all add:  union_eqvt Diff_eqvt)
apply(simp_all add: permute_set_eq atom_eqvt)
done

lemma alpha_eqvt:
  "t1 \<approx>ki s1 \<Longrightarrow> (pi \<bullet> t1) \<approx>ki (pi \<bullet> s1)"
  "t2 \<approx>rty s2 \<Longrightarrow> (pi \<bullet> t2) \<approx>rty (pi \<bullet> s2)"
  "t3 \<approx>tr s3 \<Longrightarrow> (pi \<bullet> t3) \<approx>tr (pi \<bullet> s3)"
apply(induct rule: arkind_arty_artrm.inducts)
apply (simp_all add: arkind_arty_artrm.intros)
apply (simp_all add: arkind_arty_artrm_inj)
apply (rule alpha_gen_atom_eqvt)
apply (simp add: rfv_eqvt)
apply assumption
apply (rule alpha_gen_atom_eqvt)
apply (simp add: rfv_eqvt)
apply assumption
apply (rule alpha_gen_atom_eqvt)
apply (simp add: rfv_eqvt)
apply assumption
done

lemma al_refl:
  fixes K::"rkind" 
  and   A::"rty"
  and   M::"rtrm"
  shows "K \<approx>ki K"
  and   "A \<approx>rty A"
  and   "M \<approx>tr M"
  apply(induct K and A and M rule: rkind_rty_rtrm.inducts)
  apply(auto intro: arkind_arty_artrm.intros)
  apply (rule a2)
  apply auto
  apply(rule_tac x="0" in exI)
  apply(simp_all add: fresh_star_def fresh_zero_perm alpha_gen)
  apply (rule a5)
  apply auto
  apply(rule_tac x="0" in exI)
  apply(simp_all add: fresh_star_def fresh_zero_perm alpha_gen)
  apply (rule a9)
  apply auto
  apply(rule_tac x="0" in exI)
  apply(simp_all add: fresh_star_def fresh_zero_perm alpha_gen)
  done

lemma al_sym:
  fixes K K'::"rkind" and A A'::"rty" and M M'::"rtrm"
  shows "K \<approx>ki K' \<Longrightarrow> K' \<approx>ki K"
  and   "A \<approx>rty A' \<Longrightarrow> A' \<approx>rty A"
  and   "M \<approx>tr M' \<Longrightarrow> M' \<approx>tr M"
  apply(induct K K' and A A' and M M' rule: arkind_arty_artrm.inducts)
  apply(simp_all add: arkind_arty_artrm.intros)
  apply (simp_all add: arkind_arty_artrm_inj)
  apply(erule alpha_gen_compose_sym)
  apply(erule alpha_eqvt)
  apply(erule alpha_gen_compose_sym)
  apply(erule alpha_eqvt)
  apply(erule alpha_gen_compose_sym)
  apply(erule alpha_eqvt)
  done

lemma al_trans:
  fixes K K' K''::"rkind" and A A' A''::"rty" and M M' M''::"rtrm"
  shows "K \<approx>ki K' \<Longrightarrow> K' \<approx>ki K'' \<Longrightarrow> K \<approx>ki K''"
  and   "A \<approx>rty A' \<Longrightarrow> A' \<approx>rty A'' \<Longrightarrow> A \<approx>rty A''"
  and   "M \<approx>tr M' \<Longrightarrow> M' \<approx>tr M'' \<Longrightarrow> M \<approx>tr M''"
  apply(induct K K' and A A' and M M' arbitrary: K'' and A'' and M'' rule: arkind_arty_artrm.inducts)
  apply(simp_all add: arkind_arty_artrm.intros)
  apply(erule arkind.cases)
  apply(simp_all add: arkind_arty_artrm.intros)
  apply(simp add: arkind_arty_artrm_inj)
  apply(erule alpha_gen_compose_trans)
  apply(assumption)
  apply(erule alpha_eqvt)
  apply(rotate_tac 4)
  apply(erule arty.cases)
  apply(simp_all add: arkind_arty_artrm.intros)
  apply(rotate_tac 3)
  apply(erule arty.cases)
  apply(simp_all add: arkind_arty_artrm.intros)
  apply(simp add: arkind_arty_artrm_inj)
  apply(erule alpha_gen_compose_trans)
  apply(assumption)
  apply(erule alpha_eqvt)
  apply(rotate_tac 4)
  apply(erule artrm.cases)
  apply(simp_all add: arkind_arty_artrm.intros)
  apply(rotate_tac 3)
  apply(erule artrm.cases)
  apply(simp_all add: arkind_arty_artrm.intros)
  apply(simp add: arkind_arty_artrm_inj)
  apply(erule alpha_gen_compose_trans)
  apply(assumption)
  apply(erule alpha_eqvt)
  done

lemma alpha_equivps:
  shows "equivp arkind"
  and   "equivp arty"
  and   "equivp artrm"
  apply(rule equivpI)
  unfolding reflp_def symp_def transp_def
  apply(auto intro: al_refl al_sym al_trans)
  apply(rule equivpI)
  unfolding reflp_def symp_def transp_def
  apply(auto intro: al_refl al_sym al_trans)
  apply(rule equivpI)
  unfolding reflp_def symp_def transp_def
  apply(auto intro: al_refl al_sym al_trans)
  done

quotient_type RKIND = rkind / arkind
  by (rule alpha_equivps)

quotient_type
    RTY = rty / arty and
    RTRM = rtrm / artrm
  by (auto intro: alpha_equivps)

quotient_definition
   "TYP :: RKIND"
is
  "Type"

quotient_definition
   "KPI :: RTY \<Rightarrow> name \<Rightarrow> RKIND \<Rightarrow> RKIND"
is
  "KPi"

quotient_definition
   "TCONST :: ident \<Rightarrow> RTY"
is
  "TConst"

quotient_definition
   "TAPP :: RTY \<Rightarrow> RTRM \<Rightarrow> RTY"
is
  "TApp"

quotient_definition
   "TPI :: RTY \<Rightarrow> name \<Rightarrow> RTY \<Rightarrow> RTY"
is
  "TPi"

(* FIXME: does not work with CONST *)
quotient_definition
   "CONS :: ident \<Rightarrow> RTRM"
is
  "Const"

quotient_definition
   "VAR :: name \<Rightarrow> RTRM"
is
  "Var"

quotient_definition
   "APP :: RTRM \<Rightarrow> RTRM \<Rightarrow> RTRM"
is
  "App"

quotient_definition
   "LAM :: RTY \<Rightarrow> name \<Rightarrow> RTRM \<Rightarrow> RTRM"
is
  "Lam"

(* FIXME: print out a warning if the type contains a liftet type, like rkind \<Rightarrow> name set *)
quotient_definition
   "fv_kind :: RKIND \<Rightarrow> atom set"
is
  "fv_rkind"

quotient_definition
   "fv_ty :: RTY \<Rightarrow> atom set"
is
  "fv_rty"

quotient_definition
   "fv_trm :: RTRM \<Rightarrow> atom set"
is
  "fv_rtrm"

lemma alpha_rfv:
  shows "(t \<approx>ki s \<longrightarrow> fv_rkind t = fv_rkind s) \<and>
     (t1 \<approx>rty s1 \<longrightarrow> fv_rty t1 = fv_rty s1) \<and>
     (t2 \<approx>tr s2 \<longrightarrow> fv_rtrm t2 = fv_rtrm s2)"
  apply(rule arkind_arty_artrm.induct)
  apply(simp_all add: alpha_gen)
  done

lemma perm_rsp[quot_respect]:
  "(op = ===> arkind ===> arkind) permute permute"
  "(op = ===> arty ===> arty) permute permute"
  "(op = ===> artrm ===> artrm) permute permute"
  by (simp_all add:alpha_eqvt)

lemma tconst_rsp[quot_respect]: 
  "(op = ===> arty) TConst TConst"
  apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9) done
lemma tapp_rsp[quot_respect]: 
  "(arty ===> artrm ===> arty) TApp TApp" 
  apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9) done
lemma var_rsp[quot_respect]: 
  "(op = ===> artrm) Var Var"
  apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9) done
lemma app_rsp[quot_respect]: 
  "(artrm ===> artrm ===> artrm) App App"
  apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9) done
lemma const_rsp[quot_respect]: 
  "(op = ===> artrm) Const Const"
  apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9) done

lemma kpi_rsp[quot_respect]: 
  "(arty ===> op = ===> arkind ===> arkind) KPi KPi"
  apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9)
  apply (rule a2) apply assumption
  apply (rule_tac x="0" in exI)
  apply (simp add: fresh_star_def fresh_zero_perm alpha_rfv alpha_gen)
  done

lemma tpi_rsp[quot_respect]: 
  "(arty ===> op = ===> arty ===> arty) TPi TPi"
  apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9)
  apply (rule a5) apply assumption
  apply (rule_tac x="0" in exI)
  apply (simp add: fresh_star_def fresh_zero_perm alpha_rfv alpha_gen)
  done
lemma lam_rsp[quot_respect]: 
  "(arty ===> op = ===> artrm ===> artrm) Lam Lam"
  apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9)
  apply (rule a9) apply assumption
  apply (rule_tac x="0" in exI)
  apply (simp add: fresh_star_def fresh_zero_perm alpha_rfv alpha_gen)
  done

lemma fv_rty_rsp[quot_respect]: 
  "(arty ===> op =) fv_rty fv_rty"
  by (simp add: alpha_rfv)
lemma fv_rkind_rsp[quot_respect]:
  "(arkind ===> op =) fv_rkind fv_rkind"
  by (simp add: alpha_rfv)
lemma fv_rtrm_rsp[quot_respect]:
  "(artrm ===> op =) fv_rtrm fv_rtrm"
  by (simp add: alpha_rfv)

thm rkind_rty_rtrm.induct
lemmas RKIND_RTY_RTRM_induct = rkind_rty_rtrm.induct[quot_lifted]

thm rkind_rty_rtrm.inducts
lemmas RKIND_RTY_RTRM_inducts = rkind_rty_rtrm.inducts[quot_lifted]

instantiation RKIND and RTY and RTRM :: pt
begin

quotient_definition
  "permute_RKIND :: perm \<Rightarrow> RKIND \<Rightarrow> RKIND"
is
  "permute :: perm \<Rightarrow> rkind \<Rightarrow> rkind"

quotient_definition
  "permute_RTY :: perm \<Rightarrow> RTY \<Rightarrow> RTY"
is
  "permute :: perm \<Rightarrow> rty \<Rightarrow> rty"

quotient_definition
  "permute_RTRM :: perm \<Rightarrow> RTRM \<Rightarrow> RTRM"
is
  "permute :: perm \<Rightarrow> rtrm \<Rightarrow> rtrm"

lemmas permute_ktt[simp] = permute_rkind_permute_rty_permute_rtrm.simps[quot_lifted]

lemma perm_zero_ok: "0 \<bullet> (x :: RKIND) = x \<and> 0 \<bullet> (y :: RTY) = y \<and> 0 \<bullet> (z :: RTRM) = z"
apply (induct rule: RKIND_RTY_RTRM_induct)
apply (simp_all)
done

lemma perm_add_ok:
  "((p + q) \<bullet> (x1 :: RKIND) = (p \<bullet> q \<bullet> x1))"
  "((p + q) \<bullet> (x2 :: RTY) = p \<bullet> q \<bullet> x2)"
  "((p + q) \<bullet> (x3 :: RTRM) = p \<bullet> q \<bullet> x3)"
apply (induct x1 and x2 and x3 rule: RKIND_RTY_RTRM_inducts)
apply (simp_all)
done

instance
apply default
apply (simp_all add: perm_zero_ok perm_add_ok)
done

end

lemmas ARKIND_ARTY_ARTRM_inducts = arkind_arty_artrm.inducts[unfolded alpha_gen, quot_lifted, folded alpha_gen]

lemmas RKIND_RTY_RTRM_INJECT = arkind_arty_artrm_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen]

lemmas fv_kind_ty_trm = fv_rkind_fv_rty_fv_rtrm.simps[quot_lifted]

lemmas fv_eqvt = rfv_eqvt[quot_lifted]

lemma supp_rkind_rty_rtrm_easy:
 "supp TYP = {}"
 "supp (TCONST i) = {atom i}"
 "supp (TAPP A M) = supp A \<union> supp M"
 "supp (CONS i) = {atom i}"
 "supp (VAR x) = {atom x}"
 "supp (APP M N) = supp M \<union> supp N"
apply (simp_all add: supp_def permute_ktt RKIND_RTY_RTRM_INJECT)
apply (simp_all only: supp_at_base[simplified supp_def])
apply (simp_all add: Collect_imp_eq Collect_neg_eq)
done

lemma supp_bind:
  "(supp (atom na, (ty, ki))) supports (KPI ty na ki)"
  "(supp (atom na, (ty, ty2))) supports (TPI ty na ty2)"
  "(supp (atom na, (ty, rtrm))) supports (LAM ty na rtrm)"
apply(simp_all add: supports_def)
apply(fold fresh_def)
apply(simp_all add: fresh_Pair swap_fresh_fresh)
apply(clarify)
apply(subst swap_at_base_simps(3))
apply(simp_all add: fresh_atom)
apply(clarify)
apply(subst swap_at_base_simps(3))
apply(simp_all add: fresh_atom)
apply(clarify)
apply(subst swap_at_base_simps(3))
apply(simp_all add: fresh_atom)
done

lemma RKIND_RTY_RTRM_fs:
  "finite (supp (x\<Colon>RKIND))"
  "finite (supp (y\<Colon>RTY))"
  "finite (supp (z\<Colon>RTRM))"
apply(induct x and y and z rule: RKIND_RTY_RTRM_inducts)
apply(simp_all add: supp_rkind_rty_rtrm_easy)
apply(rule supports_finite)
apply(rule supp_bind(1))
apply(simp add: supp_Pair supp_atom)
apply(rule supports_finite)
apply(rule supp_bind(2))
apply(simp add: supp_Pair supp_atom)
apply(rule supports_finite)
apply(rule supp_bind(3))
apply(simp add: supp_Pair supp_atom)
done

instance RKIND and RTY and RTRM :: fs
apply(default)
apply(simp_all only: RKIND_RTY_RTRM_fs)
done

lemma supp_fv:
 "supp t1 = fv_kind t1"
 "supp t2 = fv_ty t2"
 "supp t3 = fv_trm t3"
apply(induct t1 and t2 and t3 rule: RKIND_RTY_RTRM_inducts)
apply (simp_all add: supp_rkind_rty_rtrm_easy)
apply (simp_all add: fv_kind_ty_trm)
apply(subgoal_tac "supp (KPI rty name rkind) = supp rty \<union> supp (Abs {atom name} rkind)")
apply(simp add: supp_Abs Set.Un_commute)
apply(simp (no_asm) add: supp_def)
apply(simp add: RKIND_RTY_RTRM_INJECT)
apply(simp add: Abs_eq_iff)
apply(simp add: alpha_gen)
apply(simp add: Collect_imp_eq Collect_neg_eq Set.Un_commute insert_eqvt empty_eqvt atom_eqvt)
apply(simp add: supp_eqvt[symmetric] fv_eqvt[symmetric])
apply(subgoal_tac "supp (TPI rty1 name rty2) = supp rty1 \<union> supp (Abs {atom name} rty2)")
apply(simp add: supp_Abs Set.Un_commute)
apply(simp (no_asm) add: supp_def)
apply(simp add: RKIND_RTY_RTRM_INJECT)
apply(simp add: Abs_eq_iff)
apply(simp add: alpha_gen)
apply(simp add: supp_eqvt[symmetric] fv_eqvt[symmetric] insert_eqvt empty_eqvt atom_eqvt)
apply(simp add: Collect_imp_eq Collect_neg_eq Set.Un_commute)
apply(subgoal_tac "supp (LAM rty name rtrm) = supp rty \<union> supp (Abs {atom name} rtrm)")
apply(simp add: supp_Abs Set.Un_commute)
apply(simp (no_asm) add: supp_def)
apply(simp add: RKIND_RTY_RTRM_INJECT)
apply(simp add: Abs_eq_iff)
apply(simp add: alpha_gen)
apply(simp add: supp_eqvt[symmetric] fv_eqvt[symmetric] insert_eqvt empty_eqvt atom_eqvt)
apply(simp add: Collect_imp_eq Collect_neg_eq Set.Un_commute)
done

(* Not needed anymore *)
lemma supp_kpi_pre: "supp (KPI A x K) = (supp (Abs {atom x} K)) \<union> supp A"
apply (simp add: permute_set_eq supp_def Abs_eq_iff RKIND_RTY_RTRM_INJECT)
apply (simp add: alpha_gen supp_fv)
apply (simp add: Collect_imp_eq Collect_neg_eq add: atom_eqvt Set.Un_commute)
done

lemma supp_rkind_rty_rtrm:
 "supp TYP = {}"
 "supp (KPI A x K) = supp A \<union> (supp K - {atom x})"
 "supp (TCONST i) = {atom i}"
 "supp (TAPP A M) = supp A \<union> supp M"
 "supp (TPI A x B) = supp A \<union> (supp B - {atom x})"
 "supp (CONS i) = {atom i}"
 "supp (VAR x) = {atom x}"
 "supp (APP M N) = supp M \<union> supp N"
 "supp (LAM A x M) = supp A \<union> (supp M - {atom x})"
apply (simp_all only: supp_rkind_rty_rtrm_easy)
apply (simp_all only: supp_fv fv_kind_ty_trm)
done

end