(* CR_Takahashi from Nominal1 ported to Nominal2 *)
theory CR
imports "../Nominal2"
begin
atom_decl name
nominal_datatype lam =
Var "name"
| App "lam" "lam"
| Lam x::"name" l::"lam" binds x in l ("Lam [_]. _" [100, 100] 100)
nominal_primrec
subst :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" ("_ [_ ::= _]" [90, 90, 90] 90)
where
"(Var x)[y ::= s] = (if x = y then s else (Var x))"
| "(App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])"
| "atom x \<sharp> (y, s) \<Longrightarrow> (Lam [x]. t)[y ::= s] = Lam [x].(t[y ::= s])"
unfolding eqvt_def subst_graph_def
apply (rule, perm_simp, rule)
apply(rule TrueI)
apply(auto)
apply(rule_tac y="a" and c="(aa, b)" in lam.strong_exhaust)
apply(blast)+
apply(simp_all add: fresh_star_def fresh_Pair_elim)
apply (erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
apply(simp_all add: Abs_fresh_iff)
apply(simp add: fresh_star_def fresh_Pair)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
done
termination (eqvt)
by lexicographic_order
lemma forget:
shows "atom x \<sharp> t \<Longrightarrow> t[x ::= s] = t"
by (nominal_induct t avoiding: x s rule: lam.strong_induct)
(auto simp add: lam.fresh fresh_at_base)
lemma fresh_fact:
fixes z::"name"
assumes a: "atom z \<sharp> s"
and b: "z = y \<or> atom z \<sharp> t"
shows "atom z \<sharp> t[y ::= s]"
using a b
by (nominal_induct t avoiding: z y s rule: lam.strong_induct)
(auto simp add: lam.fresh fresh_at_base)
lemma substitution_lemma:
assumes a: "x \<noteq> y" "atom x \<sharp> u"
shows "t[x ::= s][y ::= u] = t[y ::= u][x ::= s[y ::= u]]"
using a
by (nominal_induct t avoiding: x y s u rule: lam.strong_induct)
(auto simp add: fresh_fact forget)
lemma subst_rename:
assumes a: "atom y \<sharp> t"
shows "t[x ::= s] = ((y \<leftrightarrow> x) \<bullet>t)[y ::= s]"
using a
by (nominal_induct t avoiding: x y s rule: lam.strong_induct)
(auto simp add: lam.fresh fresh_at_base)
lemma supp_subst:
shows "supp (t[x ::= s]) \<subseteq> (supp t - {atom x}) \<union> supp s"
by (induct t x s rule: subst.induct) (auto simp add: lam.supp supp_at_base)
inductive
beta :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>b _" [80,80] 80)
where
b1[intro]: "t1 \<longrightarrow>b t2 \<Longrightarrow> App t1 s \<longrightarrow>b App t2 s"
| b2[intro]: "s1 \<longrightarrow>b s2 \<Longrightarrow> App t s1 \<longrightarrow>b App t s2"
| b3[intro]: "t1 \<longrightarrow>b t2 \<Longrightarrow> Lam [x]. t1 \<longrightarrow>b Lam [x]. t2"
| b4[intro]: "atom x \<sharp> s \<Longrightarrow> App (Lam [x]. t) s \<longrightarrow>b t[x ::= s]"
equivariance beta
nominal_inductive beta
avoids b3: x
| b4: x
by (simp_all add: fresh_star_def fresh_Pair lam.fresh fresh_fact)
section {* Transitive Closure of Beta *}
inductive
beta_star :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>b* _" [80,80] 80)
where
bs1[intro, simp]: "M \<longrightarrow>b* M"
| bs2[intro]: "\<lbrakk>M1\<longrightarrow>b* M2; M2 \<longrightarrow>b M3\<rbrakk> \<Longrightarrow> M1 \<longrightarrow>b* M3"
equivariance beta_star
lemma bs3[intro, trans]:
assumes "A \<longrightarrow>b* B"
and "B \<longrightarrow>b* C"
shows "A \<longrightarrow>b* C"
using assms(2) assms(1)
by induct auto
section {* One-Reduction *}
inductive
One :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>1 _" [80,80] 80)
where
o1[intro]: "Var x \<longrightarrow>1 Var x"
| o2[intro]: "\<lbrakk>t1 \<longrightarrow>1 t2; s1 \<longrightarrow>1 s2\<rbrakk> \<Longrightarrow> App t1 s1 \<longrightarrow>1 App t2 s2"
| o3[intro]: "t1 \<longrightarrow>1 t2 \<Longrightarrow> Lam [x].t1 \<longrightarrow>1 Lam [x].t2"
| o4[intro]: "\<lbrakk>atom x \<sharp> (s1, s2); t1 \<longrightarrow>1 t2; s1 \<longrightarrow>1 s2\<rbrakk> \<Longrightarrow> App (Lam [x].t1) s1 \<longrightarrow>1 t2[x ::= s2]"
equivariance One
nominal_inductive One
avoids o3: "x"
| o4: "x"
by (simp_all add: fresh_star_def fresh_Pair lam.fresh fresh_fact)
lemma One_refl:
shows "t \<longrightarrow>1 t"
by (nominal_induct t rule: lam.strong_induct) (auto)
lemma One_subst:
assumes a: "t1 \<longrightarrow>1 t2" "s1 \<longrightarrow>1 s2"
shows "t1[x ::= s1] \<longrightarrow>1 t2[x ::= s2]"
using a
by (nominal_induct t1 t2 avoiding: s1 s2 x rule: One.strong_induct)
(auto simp add: substitution_lemma fresh_at_base fresh_fact fresh_Pair)
lemma better_o4_intro:
assumes a: "t1 \<longrightarrow>1 t2" "s1 \<longrightarrow>1 s2"
shows "App (Lam [x]. t1) s1 \<longrightarrow>1 t2[ x ::= s2]"
proof -
obtain y::"name" where fs: "atom y \<sharp> (x, t1, s1, t2, s2)" by (rule obtain_fresh)
have "App (Lam [x]. t1) s1 = App (Lam [y]. ((y \<leftrightarrow> x) \<bullet> t1)) s1" using fs
by (auto simp add: lam.eq_iff Abs1_eq_iff' flip_def fresh_Pair fresh_at_base)
also have "\<dots> \<longrightarrow>1 ((y \<leftrightarrow> x) \<bullet> t2)[y ::= s2]" using fs a by (auto simp add: One.eqvt)
also have "\<dots> = t2[x ::= s2]" using fs by (simp add: subst_rename[symmetric])
finally show "App (Lam [x].t1) s1 \<longrightarrow>1 t2[x ::= s2]" by simp
qed
lemma One_Var:
assumes a: "Var x \<longrightarrow>1 M"
shows "M = Var x"
using a by (cases rule: One.cases) (simp_all)
lemma One_Lam:
assumes a: "Lam [x].t \<longrightarrow>1 s" "atom x \<sharp> s"
shows "\<exists>t'. s = Lam [x].t' \<and> t \<longrightarrow>1 t'"
using a
apply (cases rule: One.cases)
apply (auto simp add: Abs1_eq_iff)
apply (rule_tac x="(atom xa \<rightleftharpoons> atom x) \<bullet> t2" in exI)
apply (auto simp add: fresh_permute_left lam.fresh)
by (metis swap_commute One.eqvt)
lemma One_App:
assumes a: "App t s \<longrightarrow>1 r"
shows "(\<exists>t' s'. r = App t' s' \<and> t \<longrightarrow>1 t' \<and> s \<longrightarrow>1 s') \<or>
(\<exists>x p p' s'. r = p'[x ::= s'] \<and> t = Lam [x].p \<and> p \<longrightarrow>1 p' \<and> s \<longrightarrow>1 s' \<and> atom x \<sharp> (s,s'))"
using a by (cases rule: One.cases) auto
lemma One_preserves_fresh:
fixes x::"name"
assumes a: "M \<longrightarrow>1 N"
shows "atom x \<sharp> M \<Longrightarrow> atom x \<sharp> N"
using a
by (induct, auto simp add: lam.fresh)
(metis fresh_fact)+
(* TODO *)
lemma One_strong_cases[consumes 1]:
"\<lbrakk> a1 \<longrightarrow>1 a2; \<And>x. \<lbrakk>a1 = Var x; a2 = Var x\<rbrakk> \<Longrightarrow> P;
\<And>t1 t2 s1 s2. \<lbrakk>a1 = App t1 s1; a2 = App t2 s2; t1 \<longrightarrow>1 t2; s1 \<longrightarrow>1 s2\<rbrakk> \<Longrightarrow> P;
\<And>t1 t2. (\<lbrakk>atom xa \<sharp> a1; atom xa \<sharp> a2\<rbrakk> \<Longrightarrow> a1 = Lam [xa].t1 \<and> a2 = Lam [xa].t2 \<and> t1 \<longrightarrow>1 t2) \<Longrightarrow> P;
\<And>s1 s2 t1 t2.
(\<lbrakk>atom xaa \<sharp> a1; atom xaa \<sharp> a2\<rbrakk>
\<Longrightarrow> a1 = App (Lam [xaa].t1) s1 \<and> a2 = t2[xaa::=s2] \<and> atom xaa \<sharp> (s1, s2) \<and> t1 \<longrightarrow>1 t2 \<and> s1 \<longrightarrow>1 s2) \<Longrightarrow>
P\<rbrakk>
\<Longrightarrow> P"
apply (nominal_induct avoiding: a1 a2 rule: One.strong_induct)
apply blast
apply blast
apply (simp add: fresh_Pair_elim Abs1_eq_iff lam.fresh)
apply (case_tac "xa = x")
apply (simp_all)[2]
apply blast
apply (rotate_tac 6)
apply (drule_tac x="(atom x \<rightleftharpoons> atom xa) \<bullet> t1" in meta_spec)
apply (rotate_tac -1)
apply (drule_tac x="(atom x \<rightleftharpoons> atom xa) \<bullet> t2" in meta_spec)
apply (simp add: One.eqvt fresh_permute_left)
apply (simp add: fresh_Pair_elim Abs1_eq_iff lam.fresh)
apply (case_tac "xaa = x")
apply (simp_all add: fresh_Pair)[2]
apply blast
apply (rotate_tac -2)
apply (drule_tac x="s1" in meta_spec)
apply (rotate_tac -1)
apply (drule_tac x="s2" in meta_spec)
apply (rotate_tac -1)
apply (drule_tac x="(atom x \<rightleftharpoons> atom xaa) \<bullet> t1" in meta_spec)
apply (rotate_tac -1)
apply (drule_tac x="(atom x \<rightleftharpoons> atom xaa) \<bullet> t2" in meta_spec)
apply (rotate_tac -1)
apply (simp add: One_preserves_fresh fresh_permute_left One.eqvt)
by (metis Nominal2_Base.swap_commute One_preserves_fresh flip_def subst_rename)
lemma One_Redex:
assumes a: "App (Lam [x].t) s \<longrightarrow>1 r" "atom x \<sharp> (s,r)"
shows "(\<exists>t' s'. r = App (Lam [x].t') s' \<and> t \<longrightarrow>1 t' \<and> s \<longrightarrow>1 s') \<or>
(\<exists>t' s'. r = t'[x ::= s'] \<and> t \<longrightarrow>1 t' \<and> s \<longrightarrow>1 s')"
using a
by (cases rule: One_strong_cases)
(auto dest!: One_Lam simp add: fresh_Pair lam.fresh Abs1_eq_iff)
inductive
One_star :: "lam\<Rightarrow>lam\<Rightarrow>bool" (" _ \<longrightarrow>1* _" [80,80] 80)
where
os1[intro, simp]: "t \<longrightarrow>1* t"
| os2[intro]: "t \<longrightarrow>1* r \<Longrightarrow> r \<longrightarrow>1 s \<Longrightarrow> t \<longrightarrow>1* s"
lemma os3[intro, trans]:
assumes a1: "M1 \<longrightarrow>1* M2"
and a2: "M2 \<longrightarrow>1* M3"
shows "M1 \<longrightarrow>1* M3"
using a2 a1
by induct auto
section {* Complete Development Reduction *}
inductive
Dev :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>d _" [80,80] 80)
where
d1[intro]: "Var x \<longrightarrow>d Var x"
| d2[intro]: "t \<longrightarrow>d s \<Longrightarrow> Lam [x].t \<longrightarrow>d Lam[x].s"
| d3[intro]: "\<lbrakk>\<not>(\<exists>y t'. t1 = Lam [y].t'); t1 \<longrightarrow>d t2; s1 \<longrightarrow>d s2\<rbrakk> \<Longrightarrow> App t1 s1 \<longrightarrow>d App t2 s2"
| d4[intro]: "\<lbrakk>atom x \<sharp> (s1,s2); t1 \<longrightarrow>d t2; s1 \<longrightarrow>d s2\<rbrakk> \<Longrightarrow> App (Lam [x].t1) s1 \<longrightarrow>d t2[x::=s2]"
equivariance Dev
nominal_inductive Dev
avoids d2: "x"
| d4: "x"
by (simp_all add: fresh_star_def fresh_Pair lam.fresh fresh_fact)
lemma better_d4_intro:
assumes a: "t1 \<longrightarrow>d t2" "s1 \<longrightarrow>d s2"
shows "App (Lam [x].t1) s1 \<longrightarrow>d t2[x::=s2]"
proof -
obtain y::"name" where fs: "atom y\<sharp>(x,t1,s1,t2,s2)" by (rule obtain_fresh)
have "App (Lam [x].t1) s1 = App (Lam [y].((y \<leftrightarrow> x)\<bullet>t1)) s1" using fs
by (auto simp add: Abs1_eq_iff' flip_def fresh_Pair fresh_at_base)
also have "\<dots> \<longrightarrow>d ((y \<leftrightarrow> x) \<bullet> t2)[y ::= s2]" using fs a by (auto simp add: Dev.eqvt)
also have "\<dots> = t2[x::=s2]" using fs by (simp add: subst_rename[symmetric])
finally show "App (Lam [x].t1) s1 \<longrightarrow>d t2[x::=s2]" by simp
qed
lemma Dev_preserves_fresh:
fixes x::"name"
assumes a: "M\<longrightarrow>d N"
shows "atom x\<sharp>M \<Longrightarrow> atom x\<sharp>N"
using a
by (induct, auto simp add: lam.fresh)
(metis fresh_fact)+
lemma Dev_Lam:
assumes a: "Lam [x].M \<longrightarrow>d N"
shows "\<exists>N'. N = Lam [x].N' \<and> M \<longrightarrow>d N'"
proof -
from a have "atom x \<sharp> Lam [x].M" by (simp add: lam.fresh)
with a have "atom x \<sharp> N" by (simp add: Dev_preserves_fresh)
with a show "\<exists>N'. N = Lam [x].N' \<and> M \<longrightarrow>d N'"
apply (cases rule: Dev.cases)
apply (auto simp add: Abs1_eq_iff lam.fresh)
apply (rule_tac x="(atom xa \<rightleftharpoons> atom x) \<bullet> s" in exI)
apply (auto simp add: fresh_permute_left lam.fresh)
by (metis swap_commute Dev.eqvt)
qed
lemma Development_existence:
shows "\<exists>M'. M \<longrightarrow>d M'"
by (nominal_induct M rule: lam.strong_induct)
(auto dest!: Dev_Lam intro: better_d4_intro)
lemma Triangle:
assumes a: "t \<longrightarrow>d t1" "t \<longrightarrow>1 t2"
shows "t2 \<longrightarrow>1 t1"
using a
proof(nominal_induct avoiding: t2 rule: Dev.strong_induct)
case (d4 x s1 s2 t1 t1' t2)
have fc: "atom x\<sharp>t2" "atom x\<sharp>s1" by fact+
have "App (Lam [x].t1) s1 \<longrightarrow>1 t2" by fact
then obtain t' s' where reds:
"(t2 = App (Lam [x].t') s' \<and> t1 \<longrightarrow>1 t' \<and> s1 \<longrightarrow>1 s') \<or>
(t2 = t'[x::=s'] \<and> t1 \<longrightarrow>1 t' \<and> s1 \<longrightarrow>1 s')"
using fc by (auto dest!: One_Redex)
have ih1: "t1 \<longrightarrow>1 t' \<Longrightarrow> t' \<longrightarrow>1 t1'" by fact
have ih2: "s1 \<longrightarrow>1 s' \<Longrightarrow> s' \<longrightarrow>1 s2" by fact
{ assume "t1 \<longrightarrow>1 t'" "s1 \<longrightarrow>1 s'"
then have "App (Lam [x].t') s' \<longrightarrow>1 t1'[x::=s2]"
using ih1 ih2 by (auto intro: better_o4_intro)
}
moreover
{ assume "t1 \<longrightarrow>1 t'" "s1 \<longrightarrow>1 s'"
then have "t'[x::=s'] \<longrightarrow>1 t1'[x::=s2]"
using ih1 ih2 by (auto intro: One_subst)
}
ultimately show "t2 \<longrightarrow>1 t1'[x::=s2]" using reds by auto
qed (auto dest!: One_Lam One_Var One_App)
lemma Diamond_for_One:
assumes a: "t \<longrightarrow>1 t1" "t \<longrightarrow>1 t2"
shows "\<exists>t3. t2 \<longrightarrow>1 t3 \<and> t1 \<longrightarrow>1 t3"
proof -
obtain tc where "t \<longrightarrow>d tc" using Development_existence by blast
with a have "t2 \<longrightarrow>1 tc" and "t1 \<longrightarrow>1 tc" by (simp_all add: Triangle)
then show "\<exists>t3. t2 \<longrightarrow>1 t3 \<and> t1 \<longrightarrow>1 t3" by blast
qed
lemma Rectangle_for_One:
assumes a: "t \<longrightarrow>1* t1" "t \<longrightarrow>1 t2"
shows "\<exists>t3. t1 \<longrightarrow>1 t3 \<and> t2 \<longrightarrow>1* t3"
using a Diamond_for_One by (induct arbitrary: t2) (blast)+
lemma CR_for_One_star:
assumes a: "t \<longrightarrow>1* t1" "t \<longrightarrow>1* t2"
shows "\<exists>t3. t2 \<longrightarrow>1* t3 \<and> t1 \<longrightarrow>1* t3"
using a Rectangle_for_One by (induct arbitrary: t2) (blast)+
section {* Establishing the Equivalence of Beta-star and One-star *}
lemma Beta_Lam_cong:
assumes a: "t1 \<longrightarrow>b* t2"
shows "Lam [x].t1 \<longrightarrow>b* Lam [x].t2"
using a by (induct) (blast)+
lemma Beta_App_cong_aux:
assumes a: "t1 \<longrightarrow>b* t2"
shows "App t1 s\<longrightarrow>b* App t2 s"
and "App s t1 \<longrightarrow>b* App s t2"
using a by (induct) (blast)+
lemma Beta_App_cong:
assumes a: "t1 \<longrightarrow>b* t2" "s1 \<longrightarrow>b* s2"
shows "App t1 s1 \<longrightarrow>b* App t2 s2"
using a by (blast intro: Beta_App_cong_aux)
lemmas Beta_congs = Beta_Lam_cong Beta_App_cong
lemma One_implies_Beta_star:
assumes a: "t \<longrightarrow>1 s"
shows "t \<longrightarrow>b* s"
using a by (induct, auto intro!: Beta_congs)
(metis (hide_lams, no_types) Beta_App_cong_aux(1) Beta_App_cong_aux(2) Beta_Lam_cong b4 bs2 bs3 fresh_PairD(2))
lemma One_congs:
assumes a: "t1 \<longrightarrow>1* t2"
shows "Lam [x].t1 \<longrightarrow>1* Lam [x].t2"
and "App t1 s \<longrightarrow>1* App t2 s"
and "App s t1 \<longrightarrow>1* App s t2"
using a by (induct) (auto intro: One_refl)
lemma Beta_implies_One_star:
assumes a: "t1 \<longrightarrow>b t2"
shows "t1 \<longrightarrow>1* t2"
using a by (induct) (auto intro: One_refl One_congs better_o4_intro)
lemma Beta_star_equals_One_star:
shows "t1 \<longrightarrow>1* t2 = t1 \<longrightarrow>b* t2"
proof
assume "t1 \<longrightarrow>1* t2"
then show "t1 \<longrightarrow>b* t2" by (induct) (auto intro: One_implies_Beta_star)
next
assume "t1 \<longrightarrow>b* t2"
then show "t1 \<longrightarrow>1* t2" by (induct) (auto intro: Beta_implies_One_star)
qed
section {* The Church-Rosser Theorem *}
theorem CR_for_Beta_star:
assumes a: "t \<longrightarrow>b* t1" "t\<longrightarrow>b* t2"
shows "\<exists>t3. t1 \<longrightarrow>b* t3 \<and> t2 \<longrightarrow>b* t3"
proof -
from a have "t \<longrightarrow>1* t1" and "t\<longrightarrow>1* t2" by (simp_all add: Beta_star_equals_One_star)
then have "\<exists>t3. t1 \<longrightarrow>1* t3 \<and> t2 \<longrightarrow>1* t3" by (simp add: CR_for_One_star)
then show "\<exists>t3. t1 \<longrightarrow>b* t3 \<and> t2 \<longrightarrow>b* t3" by (simp add: Beta_star_equals_One_star)
qed
end