Removed remaining cheats + some cleaning.
theory FSet
imports Quotient Quotient_List List
begin
fun
list_eq :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infix "\<approx>" 50)
where
"list_eq xs ys = (\<forall>x. x \<in> set xs \<longleftrightarrow> x \<in> set ys)"
lemma list_eq_equivp:
shows "equivp list_eq"
unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def
by auto
quotient_type
'a fset = "'a list" / "list_eq"
by (rule list_eq_equivp)
section {* empty fset, finsert and membership *}
quotient_definition
fempty ("{||}")
where
"fempty :: 'a fset"
is "[]::'a list"
quotient_definition
"finsert :: 'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is "op #"
syntax
"@Finset" :: "args => 'a fset" ("{|(_)|}")
translations
"{|x, xs|}" == "CONST finsert x {|xs|}"
"{|x|}" == "CONST finsert x {||}"
definition
memb :: "'a \<Rightarrow> 'a list \<Rightarrow> bool"
where
"memb x xs \<equiv> x \<in> set xs"
quotient_definition
fin ("_ |\<in>| _" [50, 51] 50)
where
"fin :: 'a \<Rightarrow> 'a fset \<Rightarrow> bool"
is "memb"
abbreviation
fnotin :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" ("_ |\<notin>| _" [50, 51] 50)
where
"a |\<notin>| S \<equiv> \<not>(a |\<in>| S)"
lemma memb_rsp[quot_respect]:
shows "(op = ===> op \<approx> ===> op =) memb memb"
by (auto simp add: memb_def)
lemma nil_rsp[quot_respect]:
shows "[] \<approx> []"
by simp
lemma cons_rsp[quot_respect]:
shows "(op = ===> op \<approx> ===> op \<approx>) op # op #"
by simp
section {* Augmenting a set -- @{const finsert} *}
lemma nil_not_cons:
shows
"\<not>[] \<approx> x # xs"
"\<not>x # xs \<approx> []"
by auto
lemma memb_cons_iff:
shows "memb x (y # xs) = (x = y \<or> memb x xs)"
by (induct xs) (auto simp add: memb_def)
lemma memb_consI1:
shows "memb x (x # xs)"
by (simp add: memb_def)
lemma memb_consI2:
shows "memb x xs \<Longrightarrow> memb x (y # xs)"
by (simp add: memb_def)
lemma memb_absorb:
shows "memb x xs \<Longrightarrow> x # xs \<approx> xs"
by (induct xs) (auto simp add: memb_def id_simps)
section {* Singletons *}
lemma singleton_list_eq:
shows "[x] \<approx> [y] \<longleftrightarrow> x = y"
by (simp add: id_simps) auto
section {* Union *}
quotient_definition
funion (infixl "|\<union>|" 65)
where
"funion :: 'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is
"op @"
section {* Cardinality of finite sets *}
fun
fcard_raw :: "'a list \<Rightarrow> nat"
where
fcard_raw_nil: "fcard_raw [] = 0"
| fcard_raw_cons: "fcard_raw (x # xs) = (if memb x xs then fcard_raw xs else Suc (fcard_raw xs))"
quotient_definition
"fcard :: 'a fset \<Rightarrow> nat"
is
"fcard_raw"
lemma fcard_raw_gt_0:
assumes a: "x \<in> set xs"
shows "0 < fcard_raw xs"
using a
by (induct xs) (auto simp add: memb_def)
lemma fcard_raw_delete_one:
"fcard_raw ([x \<leftarrow> xs. x \<noteq> y]) = (if memb y xs then fcard_raw xs - 1 else fcard_raw xs)"
by (induct xs) (auto dest: fcard_raw_gt_0 simp add: memb_def)
lemma fcard_raw_rsp_aux:
assumes a: "a \<approx> b"
shows "fcard_raw a = fcard_raw b"
using a
apply(induct a arbitrary: b)
apply(auto simp add: memb_def)
apply(metis)
apply(drule_tac x="[x \<leftarrow> b. x \<noteq> a1]" in meta_spec)
apply(simp add: fcard_raw_delete_one)
apply(metis Suc_pred'[OF fcard_raw_gt_0] fcard_raw_delete_one memb_def)
done
lemma fcard_raw_rsp[quot_respect]:
"(op \<approx> ===> op =) fcard_raw fcard_raw"
by (simp add: fcard_raw_rsp_aux)
section {* fmap and fset comprehension *}
quotient_definition
"fmap :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset"
is
"map"
text {* raw section *}
lemma map_rsp_aux:
assumes a: "a \<approx> b"
shows "map f a \<approx> map f b"
using a
apply(induct a arbitrary: b)
apply(auto)
apply(metis rev_image_eqI)
done
lemma map_rsp[quot_respect]:
shows "(op = ===> op \<approx> ===> op \<approx>) map map"
by (auto simp add: map_rsp_aux)
lemma cons_left_comm:
"x # y # A \<approx> y # x # A"
by (auto simp add: id_simps)
lemma cons_left_idem:
"x # x # A \<approx> x # A"
by (auto simp add: id_simps)
lemma none_mem_nil:
"(\<forall>a. a \<notin> set A) = (A \<approx> [])"
by simp
lemma finite_set_raw_strong_cases:
"(X = []) \<or> (\<exists>a Y. ((a \<notin> set Y) \<and> (X \<approx> a # Y)))"
apply (induct X)
apply (simp)
apply (rule disjI2)
apply (erule disjE)
apply (rule_tac x="a" in exI)
apply (rule_tac x="[]" in exI)
apply (simp)
apply (erule exE)+
apply (case_tac "a = aa")
apply (rule_tac x="a" in exI)
apply (rule_tac x="Y" in exI)
apply (simp)
apply (rule_tac x="aa" in exI)
apply (rule_tac x="a # Y" in exI)
apply (auto)
done
fun
delete_raw :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list"
where
"delete_raw [] x = []"
| "delete_raw (a # A) x = (if (a = x) then delete_raw A x else a # (delete_raw A x))"
lemma mem_delete_raw:
"x \<in> set (delete_raw A a) = (x \<in> set A \<and> \<not>(x = a))"
by (induct A arbitrary: x a) (auto)
lemma mem_delete_raw_ident:
"\<not>(a \<in> set (delete_raw A a))"
by (induct A) (auto)
lemma not_mem_delete_raw_ident:
"b \<notin> set A \<Longrightarrow> (delete_raw A b = A)"
by (induct A) (auto)
lemma finite_set_raw_delete_raw_cases:
"X = [] \<or> (\<exists>a. a mem X \<and> X \<approx> a # delete_raw X a)"
by (induct X) (auto)
lemma list2set_thm:
shows "set [] = {}"
and "set (h # t) = insert h (set t)"
by (auto)
lemma list2set_rsp[quot_respect]:
"(op \<approx> ===> op =) set set"
by auto
definition
rsp_fold
where
"rsp_fold f = (\<forall>u v w. (f u (f v w) = f v (f u w)))"
primrec
fold_raw :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b"
where
"fold_raw f z [] = z"
| "fold_raw f z (a # A) =
(if (rsp_fold f) then
if a mem A then fold_raw f z A
else f a (fold_raw f z A)
else z)"
section {* Constants on the Quotient Type *}
quotient_definition
"fdelete :: 'a fset \<Rightarrow> 'a \<Rightarrow> 'a fset"
is "delete_raw"
quotient_definition
"fset_to_set :: 'a fset \<Rightarrow> 'a set"
is "set"
lemma funion_sym_pre:
"a @ b \<approx> b @ a"
by auto
lemma append_rsp[quot_respect]:
shows "(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
by (auto)
lemma set_cong: "(set x = set y) = (x \<approx> y)"
apply rule
apply simp_all
apply (induct x y rule: list_induct2')
apply simp_all
apply auto
done
lemma inj_map_eq_iff:
"inj f \<Longrightarrow> (map f l \<approx> map f m) = (l \<approx> m)"
by (simp add: expand_set_eq[symmetric] inj_image_eq_iff)
section {* lifted part *}
lemma fin_finsert_iff[simp]:
"x |\<in>| finsert y S = (x = y \<or> x |\<in>| S)"
by (lifting memb_cons_iff)
lemma
shows finsertI1: "x |\<in>| finsert x S"
and finsertI2: "x |\<in>| S \<Longrightarrow> x |\<in>| finsert y S"
by (lifting memb_consI1, lifting memb_consI2)
lemma finsert_absorb[simp]:
shows "x |\<in>| S \<Longrightarrow> finsert x S = S"
by (lifting memb_absorb)
lemma fempty_not_finsert[simp]:
"{||} \<noteq> finsert x S"
"finsert x S \<noteq> {||}"
by (lifting nil_not_cons)
lemma finsert_left_comm:
"finsert a (finsert b S) = finsert b (finsert a S)"
by (lifting cons_left_comm)
lemma finsert_left_idem:
"finsert a (finsert a S) = finsert a S"
by (lifting cons_left_idem)
lemma fsingleton_eq[simp]:
shows "{|x|} = {|y|} \<longleftrightarrow> x = y"
by (lifting singleton_list_eq)
text {* fset_to_set *}
lemma fset_to_set_simps[simp]:
"fset_to_set {||} = {}"
"fset_to_set (finsert (h :: 'b) t) = insert h (fset_to_set t)"
by (lifting list2set_thm)
lemma in_fset_to_set:
"x \<in> fset_to_set xs \<equiv> x |\<in>| xs"
by (lifting memb_def[symmetric])
lemma none_in_fempty:
"(\<forall>a. a \<notin> fset_to_set A) = (A = {||})"
by (lifting none_mem_nil)
lemma fset_cong:
"(fset_to_set x = fset_to_set y) = (x = y)"
by (lifting set_cong)
text {* fcard *}
lemma fcard_fempty [simp]:
shows "fcard {||} = 0"
by (lifting fcard_raw_nil)
lemma fcard_finsert_if [simp]:
shows "fcard (finsert x S) = (if x |\<in>| S then fcard S else Suc (fcard S))"
by (lifting fcard_raw_cons)
lemma fcard_gt_0: "x \<in> fset_to_set xs \<Longrightarrow> 0 < fcard xs"
by (lifting fcard_raw_gt_0)
text {* funion *}
lemma funion_simps[simp]:
"{||} |\<union>| ys = ys"
"finsert x xs |\<union>| ys = finsert x (xs |\<union>| ys)"
by (lifting append.simps)
lemma funion_sym:
"a |\<union>| b = b |\<union>| a"
by (lifting funion_sym_pre)
lemma funion_assoc:
"x |\<union>| xa |\<union>| xb = x |\<union>| (xa |\<union>| xb)"
by (lifting append_assoc)
section {* Induction and Cases rules for finite sets *}
lemma fset_strong_cases:
"X = {||} \<or> (\<exists>a Y. a \<notin> fset_to_set Y \<and> X = finsert a Y)"
by (lifting finite_set_raw_strong_cases)
lemma fset_exhaust[case_names fempty finsert, cases type: fset]:
shows "\<lbrakk>S = {||} \<Longrightarrow> P; \<And>x S'. S = finsert x S' \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (lifting list.exhaust)
lemma fset_induct_weak[case_names fempty finsert]:
shows "\<lbrakk>P {||}; \<And>x S. P S \<Longrightarrow> P (finsert x S)\<rbrakk> \<Longrightarrow> P S"
by (lifting list.induct)
lemma fset_induct[case_names fempty finsert, induct type: fset]:
assumes prem1: "P {||}"
and prem2: "\<And>x S. \<lbrakk>x |\<notin>| S; P S\<rbrakk> \<Longrightarrow> P (finsert x S)"
shows "P S"
proof(induct S rule: fset_induct_weak)
case fempty
show "P {||}" by (rule prem1)
next
case (finsert x S)
have asm: "P S" by fact
show "P (finsert x S)"
proof(cases "x |\<in>| S")
case True
have "x |\<in>| S" by fact
then show "P (finsert x S)" using asm by simp
next
case False
have "x |\<notin>| S" by fact
then show "P (finsert x S)" using prem2 asm by simp
qed
qed
lemma fset_induct2:
"P {||} {||} \<Longrightarrow>
(\<And>x xs. x |\<notin>| xs \<Longrightarrow> P (finsert x xs) {||}) \<Longrightarrow>
(\<And>y ys. y |\<notin>| ys \<Longrightarrow> P {||} (finsert y ys)) \<Longrightarrow>
(\<And>x xs y ys. \<lbrakk>P xs ys; x |\<notin>| xs; y |\<notin>| ys\<rbrakk> \<Longrightarrow> P (finsert x xs) (finsert y ys)) \<Longrightarrow>
P xsa ysa"
apply (induct xsa arbitrary: ysa)
apply (induct_tac x rule: fset_induct)
apply simp_all
apply (induct_tac xa rule: fset_induct)
apply simp_all
done
(* fmap *)
lemma fmap_simps[simp]:
"fmap (f :: 'a \<Rightarrow> 'b) {||} = {||}"
"fmap f (finsert x xs) = finsert (f x) (fmap f xs)"
by (lifting map.simps)
lemma fmap_set_image:
"fset_to_set (fmap f fs) = f ` (fset_to_set fs)"
apply (induct fs)
apply (simp_all)
done
lemma inj_fmap_eq_iff:
"inj f \<Longrightarrow> (fmap f l = fmap f m) = (l = m)"
by (lifting inj_map_eq_iff)
ML {*
fun dest_fsetT (Type ("FSet.fset", [T])) = T
| dest_fsetT T = raise TYPE ("dest_fsetT: fset type expected", [T], []);
*}
end