theory TypeSchemes
imports "../Nominal2"
begin
section {*** Type Schemes ***}
atom_decl name
(* defined as a single nominal datatype *)
nominal_datatype ty =
Var "name"
| Fun "ty" "ty"
and tys =
All xs::"name fset" ty::"ty" bind (res) xs in ty
thm ty_tys.distinct
thm ty_tys.induct
thm ty_tys.exhaust
thm ty_tys.fv_defs
thm ty_tys.bn_defs
thm ty_tys.perm_simps
thm ty_tys.eq_iff
thm ty_tys.fv_bn_eqvt
thm ty_tys.size_eqvt
thm ty_tys.supports
thm ty_tys.supp
thm ty_tys.fresh
(* defined as two separate nominal datatypes *)
nominal_datatype ty2 =
Var2 "name"
| Fun2 "ty2" "ty2"
nominal_datatype tys2 =
All2 xs::"name fset" ty::"ty2" bind (res) xs in ty
thm tys2.distinct
thm tys2.induct
thm tys2.exhaust
thm tys2.fv_defs
thm tys2.bn_defs
thm tys2.perm_simps
thm tys2.eq_iff
thm tys2.fv_bn_eqvt
thm tys2.size_eqvt
thm tys2.supports
thm tys2.supp
thm tys2.fresh
text {* *}
(*
lemma strong_induct:
assumes a1: "\<And>name b. P b (Var name)"
and a2: "\<And>t1 t2 b. \<lbrakk>\<And>c. P c t1; \<And>c. P c t2\<rbrakk> \<Longrightarrow> P b (Fun t1 t2)"
and a3: "\<And>fset t b. \<lbrakk>\<And>c. P c t; fset_to_set (fmap atom fset) \<sharp>* b\<rbrakk> \<Longrightarrow> P' b (All fset t)"
shows "P (a :: 'a :: pt) t \<and> P' (d :: 'b :: {fs}) ts "
proof -
have " (\<forall>p a. P a (p \<bullet> t)) \<and> (\<forall>p d. P' d (p \<bullet> ts))"
apply (rule ty_tys.induct)
apply (simp add: a1)
apply (simp)
apply (rule allI)+
apply (rule a2)
apply simp
apply simp
apply (rule allI)
apply (rule allI)
apply(subgoal_tac "\<exists>pa. ((pa \<bullet> (fset_to_set (fmap atom (p \<bullet> fset)))) \<sharp>* d \<and> supp (p \<bullet> All fset ty) \<sharp>* pa)")
apply clarify
apply(rule_tac t="p \<bullet> All fset ty" and
s="pa \<bullet> (p \<bullet> All fset ty)" in subst)
apply (rule supp_perm_eq)
apply assumption
apply (simp only: ty_tys.perm_simps)
apply (rule a3)
apply(erule_tac x="(pa + p)" in allE)
apply simp
apply (simp add: eqvts eqvts_raw)
apply (rule at_set_avoiding2)
apply (simp add: fin_fset_to_set)
apply (simp add: finite_supp)
apply (simp add: eqvts finite_supp)
apply (rule_tac p=" -p" in permute_boolE)
apply(simp add: eqvts)
apply(simp add: permute_fun_def atom_eqvt)
apply (simp add: fresh_star_def)
apply clarify
apply (simp add: fresh_def)
apply(auto)
apply (simp add: ty_tys.supp)
done
then have "P a (0 \<bullet> t) \<and> P' d (0 \<bullet> ts)" by blast
then show ?thesis by simp
qed
lemma
shows "All {|a, b|} (Fun (Var a) (Var b)) = All {|b, a|} (Fun (Var a) (Var b))"
apply(simp add: ty_tys.eq_iff)
apply(rule_tac x="0::perm" in exI)
apply(simp add: alphas)
apply(simp add: fresh_star_def fresh_zero_perm supp_at_base)
done
lemma
shows "All {|a, b|} (Fun (Var a) (Var b)) = All {|a, b|} (Fun (Var b) (Var a))"
apply(simp add: ty_tys.eq_iff)
apply(rule_tac x="(atom a \<rightleftharpoons> atom b)" in exI)
apply(simp add: alphas fresh_star_def eqvts supp_at_base)
done
lemma
shows "All {|a, b, c|} (Fun (Var a) (Var b)) = All {|a, b|} (Fun (Var a) (Var b))"
apply(simp add: ty_tys.eq_iff)
apply(rule_tac x="0::perm" in exI)
apply(simp add: alphas fresh_star_def eqvts ty_tys.eq_iff supp_at_base)
done
lemma
assumes a: "a \<noteq> b"
shows "\<not>(All {|a, b|} (Fun (Var a) (Var b)) = All {|c|} (Fun (Var c) (Var c)))"
using a
apply(simp add: ty_tys.eq_iff)
apply(clarify)
apply(simp add: alphas fresh_star_def eqvts ty_tys.eq_iff supp_at_base)
apply auto
done
fun
lookup :: "(name \<times> ty) list \<Rightarrow> name \<Rightarrow> ty"
where
"lookup [] n = Var n"
| "lookup ((p, s) # t) n = (if p = n then s else lookup t n)"
locale subst_loc =
fixes
subst :: "(name \<times> ty) list \<Rightarrow> ty \<Rightarrow> ty"
and substs :: "(name \<times> ty) list \<Rightarrow> tys \<Rightarrow> tys"
assumes
s1: "subst \<theta> (Var n) = lookup \<theta> n"
and s2: "subst \<theta> (Fun l r) = Fun (subst \<theta> l) (subst \<theta> r)"
and s3: "fset_to_set (fmap atom xs) \<sharp>* \<theta> \<Longrightarrow> substs \<theta> (All xs t) = All xs (subst \<theta> t)"
begin
lemma subst_ty:
assumes x: "atom x \<sharp> t"
shows "subst [(x, S)] t = t"
using x
apply (induct t rule: ty_tys.induct[of _ "\<lambda>t. True" _ , simplified])
by (simp_all add: s1 s2 fresh_def ty_tys.fv[simplified ty_tys.supp] supp_at_base)
lemma subst_tyS:
shows "atom x \<sharp> T \<longrightarrow> substs [(x, S)] T = T"
apply (rule strong_induct[of
"\<lambda>a t. True" "\<lambda>(x, S) T. (atom x \<sharp> T \<longrightarrow> substs [(x, S)] T = T)" _ "t" "(x, S)", simplified])
apply clarify
apply (subst s3)
apply (simp add: fresh_star_def fresh_Cons fresh_Nil)
apply (subst subst_ty)
apply (simp_all add: fresh_star_prod_elim)
apply (drule fresh_star_atom)
apply (simp add: fresh_def ty_tys.fv[simplified ty_tys.supp])
apply (subgoal_tac "atom a \<notin> fset_to_set (fmap atom fset)")
apply blast
apply (metis supp_finite_atom_set finite_fset)
done
lemma subst_lemma_pre:
"z \<sharp> (N,L) \<longrightarrow> z \<sharp> (subst [(y, L)] N)"
apply (induct N rule: ty_tys.induct[of _ "\<lambda>t. True" _ , simplified])
apply (simp add: s1)
apply (auto simp add: fresh_Pair)
apply (auto simp add: fresh_def ty_tys.fv[simplified ty_tys.supp])[3]
apply (simp add: s2)
apply (auto simp add: fresh_def ty_tys.fv[simplified ty_tys.supp])
done
lemma substs_lemma_pre:
"atom z \<sharp> (N,L) \<longrightarrow> atom z \<sharp> (substs [(y, L)] N)"
apply (rule strong_induct[of
"\<lambda>a t. True" "\<lambda>(z, y, L) N. (atom z \<sharp> (N, L) \<longrightarrow> atom z \<sharp> (substs [(y, L)] N))" _ _ "(z, y, L)", simplified])
apply clarify
apply (subst s3)
apply (simp add: fresh_star_def fresh_Cons fresh_Nil fresh_Pair)
apply (simp_all add: fresh_star_prod_elim fresh_Pair)
apply clarify
apply (drule fresh_star_atom)
apply (drule fresh_star_atom)
apply (simp add: fresh_def)
apply (simp only: ty_tys.fv[simplified ty_tys.supp])
apply (subgoal_tac "atom a \<notin> supp (subst [(aa, b)] t)")
apply blast
apply (subgoal_tac "atom a \<notin> supp t")
apply (fold fresh_def)[1]
apply (rule mp[OF subst_lemma_pre])
apply (simp add: fresh_Pair)
apply (subgoal_tac "atom a \<notin> (fset_to_set (fmap atom fset))")
apply blast
apply (metis supp_finite_atom_set finite_fset)
done
lemma subst_lemma:
shows "x \<noteq> y \<and> atom x \<sharp> L \<longrightarrow>
subst [(y, L)] (subst [(x, N)] M) =
subst [(x, (subst [(y, L)] N))] (subst [(y, L)] M)"
apply (induct M rule: ty_tys.induct[of _ "\<lambda>t. True" _ , simplified])
apply (simp_all add: s1 s2)
apply clarify
apply (subst (2) subst_ty)
apply simp_all
done
lemma substs_lemma:
shows "x \<noteq> y \<and> atom x \<sharp> L \<longrightarrow>
substs [(y, L)] (substs [(x, N)] M) =
substs [(x, (subst [(y, L)] N))] (substs [(y, L)] M)"
apply (rule strong_induct[of
"\<lambda>a t. True" "\<lambda>(x, y, N, L) M. x \<noteq> y \<and> atom x \<sharp> L \<longrightarrow>
substs [(y, L)] (substs [(x, N)] M) =
substs [(x, (subst [(y, L)] N))] (substs [(y, L)] M)" _ _ "(x, y, N, L)", simplified])
apply clarify
apply (simp_all add: fresh_star_prod_elim fresh_Pair)
apply (subst s3)
apply (unfold fresh_star_def)[1]
apply (simp add: fresh_Cons fresh_Nil fresh_Pair)
apply (subst s3)
apply (unfold fresh_star_def)[1]
apply (simp add: fresh_Cons fresh_Nil fresh_Pair)
apply (subst s3)
apply (unfold fresh_star_def)[1]
apply (simp add: fresh_Cons fresh_Nil fresh_Pair)
apply (subst s3)
apply (unfold fresh_star_def)[1]
apply (simp add: fresh_Cons fresh_Nil fresh_Pair)
apply (rule ballI)
apply (rule mp[OF subst_lemma_pre])
apply (simp add: fresh_Pair)
apply (subst subst_lemma)
apply simp_all
done
end
*)
end