(* Title: nominal_dt_alpha.ML
Author: Christian Urban
Author: Cezary Kaliszyk
Performing quotient constructions
*)
signature NOMINAL_DT_QUOT =
sig
val define_qtypes: (string list * binding * mixfix) list -> typ list -> term list ->
thm list -> local_theory -> Quotient_Info.quotdata_info list * local_theory
val define_qconsts: typ list -> (string * term * mixfix) list -> local_theory ->
Quotient_Info.qconsts_info list * local_theory
val define_qperms: typ list -> string list -> (string * term * mixfix) list ->
thm list -> theory -> theory
val define_qsizes: typ list -> string list -> (string * term * mixfix) list ->
theory -> theory
end
structure Nominal_Dt_Quot: NOMINAL_DT_QUOT =
struct
(* defines the quotient types *)
fun define_qtypes qtys_descr alpha_tys alpha_trms alpha_equivp_thms lthy =
let
val qty_args1 = map2 (fn ty => fn trm => (ty, trm, false)) alpha_tys alpha_trms
val qty_args2 = (qtys_descr ~~ qty_args1) ~~ alpha_equivp_thms
in
fold_map Quotient_Type.add_quotient_type qty_args2 lthy
end
(* defines quotient constants *)
fun define_qconsts qtys consts_specs lthy =
let
val (qconst_infos, lthy') =
fold_map (Quotient_Def.lift_raw_const qtys) consts_specs lthy
val phi = ProofContext.export_morphism lthy' lthy
in
(map (Quotient_Info.transform_qconsts phi) qconst_infos, lthy')
end
(* defines the quotient permutations and proves pt-class *)
fun define_qperms qtys qfull_ty_names perm_specs raw_perm_laws thy =
let
val lthy = Class.instantiation (qfull_ty_names, [], @{sort pt}) thy
val (_, lthy') = define_qconsts qtys perm_specs lthy
val lifted_perm_laws = map (Quotient_Tacs.lifted qtys lthy') raw_perm_laws
fun tac _ =
Class.intro_classes_tac [] THEN
(ALLGOALS (resolve_tac lifted_perm_laws))
in
lthy'
|> Class.prove_instantiation_exit tac
end
(* defines the size functions and proves size-class *)
fun define_qsizes qtys qfull_ty_names size_specs thy =
let
val lthy = Class.instantiation (qfull_ty_names, [], @{sort size}) thy
val (_, lthy') = define_qconsts qtys size_specs lthy
fun tac _ = Class.intro_classes_tac []
in
lthy'
|> Class.prove_instantiation_exit tac
end
end (* structure *)