theory Perm
imports "../Nominal-General/Nominal2_Atoms"
begin
ML {*
fun quotient_lift_consts_export qtys spec ctxt =
let
val (result, ctxt') = fold_map (Quotient_Def.quotient_lift_const qtys) spec ctxt;
val (ts_loc, defs_loc) = split_list result;
val morphism = ProofContext.export_morphism ctxt' ctxt;
val ts = map (Morphism.term morphism) ts_loc
val defs = Morphism.fact morphism defs_loc
in
(ts, defs, ctxt')
end
*}
ML {*
fun prove_perm_zero lthy induct perm_def perm_frees =
let
val perm_types = map fastype_of perm_frees;
val perm_indnames = Datatype_Prop.make_tnames (map body_type perm_types);
fun glc ((perm, T), x) =
HOLogic.mk_eq (perm $ @{term "0::perm"} $ Free (x, T), Free (x, T))
val gl =
HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
(map glc (perm_frees ~~ map body_type perm_types ~~ perm_indnames)));
fun tac _ =
EVERY [
Datatype_Aux.indtac induct perm_indnames 1,
ALLGOALS (asm_full_simp_tac (HOL_ss addsimps (@{thm permute_zero} :: perm_def)))
];
in
Datatype_Aux.split_conj_thm (Goal.prove lthy perm_indnames [] gl tac)
end;
*}
ML {*
fun prove_perm_plus lthy induct perm_def perm_frees =
let
val pi1 = Free ("pi1", @{typ perm});
val pi2 = Free ("pi2", @{typ perm});
val perm_types = map fastype_of perm_frees
val perm_indnames = Datatype_Prop.make_tnames (map body_type perm_types);
fun glc ((perm, T), x) =
HOLogic.mk_eq (
perm $ (mk_plus pi1 pi2) $ Free (x, T),
perm $ pi1 $ (perm $ pi2 $ Free (x, T)))
val goal =
(HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
(map glc (perm_frees ~~ map body_type perm_types ~~ perm_indnames))))
fun tac _ =
EVERY [
Datatype_Aux.indtac induct perm_indnames 1,
ALLGOALS (asm_full_simp_tac (HOL_ss addsimps (@{thm permute_plus} :: perm_def)))
]
in
Datatype_Aux.split_conj_thm (Goal.prove lthy ("pi1" :: "pi2" :: perm_indnames) [] goal tac)
end;
*}
(* definitions of the permute function for a raw nominal datatype *)
ML {*
fun nth_dtyp dt_descr sorts i =
Datatype_Aux.typ_of_dtyp dt_descr sorts (Datatype_Aux.DtRec i);
*}
ML {*
(* permutation function for one argument
- in case the argument is recursive it returns
permute_fn p arg
- in case the argument is non-recursive it will build
p o arg
*)
fun perm_arg permute_fns pi (arg_dty, arg) =
if Datatype_Aux.is_rec_type arg_dty
then Free (nth permute_fns (Datatype_Aux.body_index arg_dty)) $ pi $ arg
else mk_perm pi arg
*}
ML {*
(* equation for permutation function for one constructor;
i is the index of the correspodning datatype *)
fun perm_eq_constr dt_descr sorts permute_fns i (cnstr_name, dts) =
let
val pi = Free ("p", @{typ perm})
val arg_tys = map (Datatype_Aux.typ_of_dtyp dt_descr sorts) dts
val arg_names = Name.variant_list ["p"] (Datatype_Prop.make_tnames arg_tys)
val args = map Free (arg_names ~~ arg_tys)
val cnstr = Const (cnstr_name, arg_tys ---> (nth_dtyp dt_descr sorts i))
val lhs = Free (nth permute_fns i) $ pi $ list_comb (cnstr, args)
val rhs = list_comb (cnstr, map (perm_arg permute_fns pi) (dts ~~ args))
val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
in
(Attrib.empty_binding, eq)
end
*}
ML {*
(* defines the permutation functions for raw datatypes and
proves that they are instances of pt
*)
fun define_raw_perms (dt_info : Datatype_Aux.info) dt_nos thy =
let
val {descr as dt_descr, induct, sorts, ...} = dt_info;
val all_full_tnames = map (fn (_, (n, _, _)) => n) dt_descr;
val full_tnames = List.take (all_full_tnames, dt_nos);
val perm_fn_names = Datatype_Prop.indexify_names (map (fn (i, _) =>
"permute_" ^ Datatype_Aux.name_of_typ (nth_dtyp dt_descr sorts i)) dt_descr);
val perm_types = map (fn (i, _) => perm_ty (nth_dtyp dt_descr sorts i)) dt_descr
val permute_fns = perm_fn_names ~~ perm_types
fun perm_eq (i, (_, _, constrs)) =
map (perm_eq_constr dt_descr sorts permute_fns i) constrs;
val perm_eqs = maps perm_eq dt_descr;
val lthy =
Theory_Target.instantiation (full_tnames, [], @{sort pt}) thy;
val ((perm_frees, perm_ldef), lthy') =
Primrec.add_primrec
(map (fn s => (Binding.name s, NONE, NoSyn)) perm_fn_names) perm_eqs lthy;
val perm_zero_thms = List.take (prove_perm_zero lthy' induct perm_ldef perm_frees, dt_nos);
val perm_plus_thms = List.take (prove_perm_plus lthy' induct perm_ldef perm_frees, dt_nos)
val perms_name = space_implode "_" perm_fn_names
val perms_zero_bind = Binding.name (perms_name ^ "_zero")
val perms_plus_bind = Binding.name (perms_name ^ "_plus")
fun tac _ (_, simps, _) =
(Class.intro_classes_tac []) THEN (ALLGOALS (resolve_tac simps));
fun morphism phi (dfs, simps, fvs) =
(map (Morphism.thm phi) dfs, map (Morphism.thm phi) simps, map (Morphism.term phi) fvs);
in
lthy'
|> snd o (Local_Theory.note ((perms_zero_bind, []), perm_zero_thms))
|> snd o (Local_Theory.note ((perms_plus_bind, []), perm_plus_thms))
|> Class_Target.prove_instantiation_exit_result morphism tac
(perm_ldef, (perm_zero_thms @ perm_plus_thms), perm_frees)
end
*}
(* Test *)
(*atom_decl name
datatype trm =
Var "name"
| App "trm" "trm list"
| Lam "name" "trm"
| Let "bp" "trm" "trm"
and bp =
BUnit
| BVar "name"
| BPair "bp" "bp"
setup {* fn thy =>
let
val info = Datatype.the_info thy "Perm.trm"
in
define_raw_perms info 2 thy |> snd
end
*}
print_theorems
*)
ML {*
fun define_lifted_perms qtys full_tnames name_term_pairs thms thy =
let
val lthy =
Theory_Target.instantiation (full_tnames, [], @{sort pt}) thy;
val (_, _, lthy') = quotient_lift_consts_export qtys name_term_pairs lthy;
val lifted_thms = map (Quotient_Tacs.lifted qtys lthy') thms;
fun tac _ =
Class.intro_classes_tac [] THEN
(ALLGOALS (resolve_tac lifted_thms))
val lthy'' = Class.prove_instantiation_instance tac lthy'
in
Local_Theory.exit_global lthy''
end
*}
ML {*
fun neq_to_rel r neq =
let
val neq = HOLogic.dest_Trueprop (prop_of neq)
val eq = HOLogic.dest_not neq
val (lhs, rhs) = HOLogic.dest_eq eq
val rel = r $ lhs $ rhs
val nrel = HOLogic.mk_not rel
in
HOLogic.mk_Trueprop nrel
end
*}
ML {*
fun neq_to_rel_tac cases distinct =
rtac notI THEN' eresolve_tac cases THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps distinct)
*}
ML {*
fun distinct_rel ctxt cases (dists, rel) =
let
val ((_, thms), ctxt') = Variable.import false dists ctxt
val terms = map (neq_to_rel rel) thms
val nrels = map (fn t => Goal.prove ctxt' [] [] t (fn _ => neq_to_rel_tac cases dists 1)) terms
in
Variable.export ctxt' ctxt nrels
end
*}
(* Test *)
(*atom_decl name
datatype trm =
Var "name"
| App "trm" "trm list"
| Lam "name" "trm"
| Let "bp" "trm" "trm"
and bp =
BUnit
| BVar "name"
| BPair "bp" "bp"
setup {* fn thy =>
let
val inf = Datatype.the_info thy "Perm.trm"
in
define_raw_perms inf 2 thy |> snd
end
*}
print_theorems
*)
end