moved the exporting part into the parser (this is still a hack); re-added CoreHaskell again to the examples - there seems to be a problem with the variable name pat
theory NewParserimports "../Nominal-General/Nominal2_Base" "../Nominal-General/Nominal2_Eqvt" "../Nominal-General/Nominal2_Supp" "Perm" "NewFv" "NewAlpha" "Tacs" "Equivp" "Lift"beginsection{* Interface for nominal_datatype *}ML {* (* nominal datatype parser *)local structure P = OuterParse; structure S = Scan fun triple1 ((x, y), z) = (x, y, z) fun triple2 (x, (y, z)) = (x, y, z) fun tuple ((x, y, z), u) = (x, y, z, u) fun tswap (((x, y), z), u) = (x, y, u, z)inval _ = OuterKeyword.keyword "bind"val _ = OuterKeyword.keyword "bind_set"val _ = OuterKeyword.keyword "bind_res"val anno_typ = S.option (P.name --| P.$$$ "::") -- P.typval bind_mode = P.$$$ "bind" || P.$$$ "bind_set" || P.$$$ "bind_res"val bind_clauses = P.enum "," (bind_mode -- S.repeat1 P.term -- (P.$$$ "in" |-- S.repeat1 P.name) >> triple1)val cnstr_parser = P.binding -- S.repeat anno_typ -- bind_clauses -- P.opt_mixfix >> tswap(* datatype parser *)val dt_parser = (P.type_args -- P.binding -- P.opt_mixfix >> triple1) -- (P.$$$ "=" |-- P.enum1 "|" cnstr_parser) >> tuple(* binding function parser *)val bnfun_parser = S.optional (P.$$$ "binder" |-- P.fixes -- SpecParse.where_alt_specs) ([], [])(* main parser *)val main_parser = P.and_list1 dt_parser -- bnfun_parser >> triple2end*}ML {*fun get_cnstrs dts = map (fn (_, _, _, constrs) => constrs) dtsfun get_typed_cnstrs dts = flat (map (fn (_, bn, _, constrs) => (map (fn (bn', _, _) => (Binding.name_of bn, Binding.name_of bn')) constrs)) dts)fun get_cnstr_strs dts = map (fn (bn, _, _) => Binding.name_of bn) (flat (get_cnstrs dts))fun get_bn_fun_strs bn_funs = map (fn (bn_fun, _, _) => Binding.name_of bn_fun) bn_funs*}ML {* fun add_primrec_wrapper funs eqs lthy = if null funs then (([], []), lthy) else let val eqs' = map (fn (_, eq) => (Attrib.empty_binding, eq)) eqs val funs' = map (fn (bn, ty, mx) => (bn, SOME ty, mx)) funs val ((funs'', eqs''), lthy') = Primrec.add_primrec funs' eqs' lthy val phi = ProofContext.export_morphism lthy' lthy in ((map (Morphism.term phi) funs'', map (Morphism.thm phi) eqs''), lthy') end*}ML {*fun add_datatype_wrapper dt_names dts =let val conf = Datatype.default_configin Local_Theory.theory_result (Datatype.add_datatype conf dt_names dts)end*}text {* Infrastructure for adding "_raw" to types and terms *}ML {*fun add_raw s = s ^ "_raw"fun add_raws ss = map add_raw ssfun raw_bind bn = Binding.suffix_name "_raw" bnfun replace_str ss s = case (AList.lookup (op=) ss s) of SOME s' => s' | NONE => sfun replace_typ ty_ss (Type (a, Ts)) = Type (replace_str ty_ss a, map (replace_typ ty_ss) Ts) | replace_typ ty_ss T = T fun raw_dts ty_ss dts =let fun raw_dts_aux1 (bind, tys, mx) = (raw_bind bind, map (replace_typ ty_ss) tys, mx) fun raw_dts_aux2 (ty_args, bind, mx, constrs) = (ty_args, raw_bind bind, mx, map raw_dts_aux1 constrs)in map raw_dts_aux2 dtsendfun replace_aterm trm_ss (Const (a, T)) = Const (replace_str trm_ss a, T) | replace_aterm trm_ss (Free (a, T)) = Free (replace_str trm_ss a, T) | replace_aterm trm_ss trm = trmfun replace_term trm_ss ty_ss trm = trm |> Term.map_aterms (replace_aterm trm_ss) |> map_types (replace_typ ty_ss) *}ML {*fun rawify_dts dt_names dts dts_env =let val raw_dts = raw_dts dts_env dts val raw_dt_names = add_raws dt_namesin (raw_dt_names, raw_dts)end *}ML {*fun rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs =let val bn_funs' = map (fn (bn, ty, mx) => (raw_bind bn, replace_typ dts_env ty, mx)) bn_funs val bn_eqs' = map (fn (attr, trm) => (attr, replace_term (cnstrs_env @ bn_fun_env) dts_env trm)) bn_eqsin (bn_funs', bn_eqs') end *}ML {* fun rawify_bclauses dts_env cnstrs_env bn_fun_env bclauses =let fun rawify_bnds bnds = map (apfst (Option.map (replace_term (cnstrs_env @ bn_fun_env) dts_env))) bnds fun rawify_bclause (BEmy n) = BEmy n | rawify_bclause (BLst (bnds, bdys)) = BLst (rawify_bnds bnds, bdys) | rawify_bclause (BSet (bnds, bdys)) = BSet (rawify_bnds bnds, bdys) | rawify_bclause (BRes (bnds, bdys)) = BRes (rawify_bnds bnds, bdys)in map (map (map rawify_bclause)) bclausesend*}(* strip_bn_fun takes a bn function defined by the user as a union or append of elements and returns those elements together with bn functions applied *)ML {*fun strip_bn_fun t = case t of Const (@{const_name sup}, _) $ l $ r => strip_bn_fun l @ strip_bn_fun r | Const (@{const_name append}, _) $ l $ r => strip_bn_fun l @ strip_bn_fun r | Const (@{const_name insert}, _) $ (Const (@{const_name atom}, _) $ Bound i) $ y => (i, NONE) :: strip_bn_fun y | Const (@{const_name Cons}, _) $ (Const (@{const_name atom}, _) $ Bound i) $ y => (i, NONE) :: strip_bn_fun y | Const (@{const_name bot}, _) => [] | Const (@{const_name Nil}, _) => [] | (f as Free _) $ Bound i => [(i, SOME f)] | _ => error ("Unsupported binding function: " ^ (PolyML.makestring t))*}ML {*fun find [] _ = error ("cannot find element") | find ((x, z)::xs) y = if (Long_Name.base_name x) = y then z else find xs y*}ML {*fun prep_bn lthy dt_names dts eqs = let fun aux eq = let val (lhs, rhs) = eq |> strip_qnt_body "all" |> HOLogic.dest_Trueprop |> HOLogic.dest_eq val (bn_fun, [cnstr]) = strip_comb lhs val (_, ty) = dest_Free bn_fun val (ty_name, _) = dest_Type (domain_type ty) val dt_index = find_index (fn x => x = ty_name) dt_names val (cnstr_head, cnstr_args) = strip_comb cnstr val rhs_elements = strip_bn_fun rhs val included = map (apfst (fn i => length (cnstr_args) - i - 1)) rhs_elements in (dt_index, (bn_fun, (cnstr_head, included))) end fun order dts i ts = let val dt = nth dts i val cts = map (fn (x, _, _) => Binding.name_of x) ((fn (_, _, _, x) => x) dt) val ts' = map (fn (x, y) => (fst (dest_Const x), y)) ts in map (find ts') cts end val unordered = AList.group (op=) (map aux eqs) val unordered' = map (fn (x, y) => (x, AList.group (op=) y)) unordered val ordered = map (fn (x, y) => (x, map (fn (v, z) => (v, order dts x z)) y)) unordered' val ordered' = flat (map (fn (ith, l) => map (fn (bn, data) => (bn, ith, data)) l) ordered) val _ = tracing ("eqs\n" ^ cat_lines (map (Syntax.string_of_term lthy) eqs)) (*val _ = tracing ("map eqs\n" ^ @{make_string} (map aux2 eqs))*) val _ = tracing ("ordered'\n" ^ @{make_string} ordered')in ordered'end*}ML {* add_primrec_wrapper *}ML {*fun raw_nominal_decls dts bn_funs bn_eqs binds lthy =let val thy = ProofContext.theory_of lthy val thy_name = Context.theory_name thy val dt_names = map (fn (_, s, _, _) => Binding.name_of s) dts val dt_full_names = map (Long_Name.qualify thy_name) dt_names val dt_full_names' = add_raws dt_full_names val dts_env = dt_full_names ~~ dt_full_names' val cnstrs = get_cnstr_strs dts val cnstrs_ty = get_typed_cnstrs dts val cnstrs_full_names = map (Long_Name.qualify thy_name) cnstrs val cnstrs_full_names' = map (fn (x, y) => Long_Name.qualify thy_name (Long_Name.qualify (add_raw x) (add_raw y))) cnstrs_ty val cnstrs_env = cnstrs_full_names ~~ cnstrs_full_names' val bn_fun_strs = get_bn_fun_strs bn_funs val bn_fun_strs' = add_raws bn_fun_strs val bn_fun_env = bn_fun_strs ~~ bn_fun_strs' val bn_fun_full_env = map (pairself (Long_Name.qualify thy_name)) (bn_fun_strs ~~ bn_fun_strs') val (raw_dt_names, raw_dts) = rawify_dts dt_names dts dts_env val (raw_bn_funs, raw_bn_eqs) = rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs val raw_bclauses = rawify_bclauses dts_env cnstrs_env bn_fun_full_env binds val raw_bns = prep_bn lthy dt_full_names' raw_dts (map snd raw_bn_eqs) val (raw_dt_names, lthy1) = add_datatype_wrapper raw_dt_names raw_dts lthy val ((raw_bn_funs, raw_bn_eqs), lthy2) = add_primrec_wrapper raw_bn_funs raw_bn_eqs lthy1 val morphism_2_0 = ProofContext.export_morphism lthy2 lthy fun export_fun f (t, n , l) = (f t, n, map (map (apsnd (Option.map f))) l); val bn_funs_decls = map (export_fun (Morphism.term morphism_2_0)) raw_bns;in (raw_dt_names, raw_bn_eqs, raw_bclauses, bn_funs_decls, lthy2)end*}lemma equivp_hack: "equivp x"sorryML {*fun equivp_hack ctxt rel =let val thy = ProofContext.theory_of ctxt val ty = domain_type (fastype_of rel) val cty = ctyp_of thy ty val ct = cterm_of thy relin Drule.instantiate' [SOME cty] [SOME ct] @{thm equivp_hack}end*}ML {* val cheat_equivp = Unsynchronized.ref false *}ML {* val cheat_fv_rsp = Unsynchronized.ref false *}ML {* val cheat_alpha_bn_rsp = Unsynchronized.ref false *}ML {* val cheat_supp_eq = Unsynchronized.ref false *}ML {*fun remove_loop t = let val _ = HOLogic.dest_eq (HOLogic.dest_Trueprop (prop_of t)) in t end handle TERM _ => @{thm eqTrueI} OF [t]*}text {* nominal_datatype2 does the following things in order:Parser.thy/raw_nominal_decls 1) define the raw datatype 2) define the raw binding functions Perm.thy/define_raw_perms 3) define permutations of the raw datatype and show that the raw type is in the pt typeclassLift.thy/define_fv_alpha_export, Fv.thy/define_fv & define_alpha 4) define fv and fv_bn 5) define alpha and alpha_bnPerm.thy/distinct_rel 6) prove alpha_distincts (C1 x \<notsimeq> C2 y ...) (Proof by cases; simp)Tacs.thy/build_rel_inj 6) prove alpha_eq_iff (C1 x = C2 y \<leftrightarrow> P x y ...) (left-to-right by intro rule, right-to-left by cases; simp)Equivp.thy/prove_eqvt 7) prove bn_eqvt (common induction on the raw datatype) 8) prove fv_eqvt (common induction on the raw datatype with help of above)Rsp.thy/build_alpha_eqvts 9) prove alpha_eqvt and alpha_bn_eqvt (common alpha-induction, unfolding alpha_gen, permute of #* and =)Equivp.thy/build_alpha_refl & Equivp.thy/build_equivps 10) prove that alpha and alpha_bn are equivalence relations (common induction and application of 'compose' lemmas)Lift.thy/define_quotient_types 11) define quotient typesRsp.thy/build_fvbv_rsps 12) prove bn respects (common induction and simp with alpha_gen)Rsp.thy/prove_const_rsp 13) prove fv respects (common induction and simp with alpha_gen) 14) prove permute respects (unfolds to alpha_eqvt)Rsp.thy/prove_alpha_bn_rsp 15) prove alpha_bn respects (alpha_induct then cases then sym and trans of the relations)Rsp.thy/prove_alpha_alphabn 16) show that alpha implies alpha_bn (by unduction, needed in following step)Rsp.thy/prove_const_rsp 17) prove respects for all datatype constructors (unfold eq_iff and alpha_gen; introduce zero permutations; simp)Perm.thy/quotient_lift_consts_export 18) define lifted constructors, fv, bn, alpha_bn, permutationsPerm.thy/define_lifted_perms 19) lift permutation zero and add properties to show that quotient type is in the pt typeclassLift.thy/lift_thm 20) lift permutation simplifications 21) lift induction 22) lift fv 23) lift bn 24) lift eq_iff 25) lift alpha_distincts 26) lift fv and bn eqvtsEquivp.thy/prove_supports 27) prove that union of arguments supports constructorsEquivp.thy/prove_fs 28) show that the lifted type is in fs typeclass (* by q_induct, supports *)Equivp.thy/supp_eq 29) prove supp = fv*}ML {*(* for testing porposes - to exit the procedure early *)exception TEST of Proof.contextval (STEPS, STEPS_setup) = Attrib.config_int "STEPS" (K 10);fun get_STEPS ctxt = Config.get ctxt STEPS*}setup STEPS_setupML {*fun nominal_datatype2 dts bn_funs bn_eqs bclauses lthy =let (* definition of the raw datatype and raw bn-functions *) val (raw_dt_names, raw_bn_eqs, raw_bclauses, raw_bns, lthy1) = if get_STEPS lthy > 1 then raw_nominal_decls dts bn_funs bn_eqs bclauses lthy else raise TEST lthy val dtinfo = Datatype.the_info (ProofContext.theory_of lthy1) (hd raw_dt_names); val {descr, sorts, ...} = dtinfo; val raw_tys = map (fn (i, _) => nth_dtyp descr sorts i) descr; val all_typs = map (fn i => Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec i)) (map fst descr) val all_full_tnames = map (fn (_, (n, _, _)) => n) descr; val dtinfos = map (Datatype.the_info (ProofContext.theory_of lthy1)) all_full_tnames; val inject_thms = flat (map #inject dtinfos); val distinct_thms = flat (map #distinct dtinfos); val rel_dtinfos = List.take (dtinfos, (length dts)); val rel_distinct = map #distinct rel_dtinfos; (* thm list list *) val induct_thm = #induct dtinfo; val exhaust_thms = map #exhaust dtinfos; (* definitions of raw permutations *) val ((raw_perm_def, raw_perm_simps, perms), lthy2) = if get_STEPS lthy > 2 then Local_Theory.theory_result (define_raw_perms descr sorts induct_thm (length dts)) lthy1 else raise TEST lthy1 val (_, lthy2a) = Local_Theory.note ((Binding.empty, [Attrib.internal (fn _ => Nominal_ThmDecls.eqvt_add)]), raw_perm_def) lthy2; val thy = Local_Theory.exit_global lthy2a; val thy_name = Context.theory_name thy (* definition of raw fv_functions *) val lthy3 = Theory_Target.init NONE thy; val raw_bn_funs = map (fn (f, _, _) => f) raw_bns; val ((fv, fvbn), fv_def, lthy3a) = if get_STEPS lthy > 3 then define_raw_fv descr sorts raw_bns raw_bclauses lthy3 else raise TEST lthy3 (* definition of raw alphas *) val (((alpha_ts, alpha_intros), (alpha_cases, alpha_induct)), lthy4) = if get_STEPS lthy > 4 then define_raw_alpha dtinfo raw_bns raw_bclauses fv lthy3a else raise TEST lthy3a val (alpha_ts_nobn, alpha_ts_bn) = chop (length fv) alpha_ts val dts_names = map (fn (i, (s, _, _)) => (s, i)) (#descr dtinfo); val bn_tys = map (domain_type o fastype_of) raw_bn_funs; val bn_nos = map (dtyp_no_of_typ dts_names) bn_tys; val bns = raw_bn_funs ~~ bn_nos; val rel_dists = flat (map (distinct_rel lthy4 alpha_cases) (rel_distinct ~~ alpha_ts_nobn)); val rel_dists_bn = flat (map (distinct_rel lthy4 alpha_cases) ((map (fn i => nth rel_distinct i) bn_nos) ~~ alpha_ts_bn)) (* definition of raw_alpha_eq_iff lemmas *) val alpha_eq_iff = build_rel_inj alpha_intros (inject_thms @ distinct_thms) alpha_cases lthy4 val alpha_eq_iff_simp = map remove_loop alpha_eq_iff; val _ = map tracing (map PolyML.makestring alpha_eq_iff_simp); (* proving equivariance lemmas *) val _ = warning "Proving equivariance"; val (bv_eqvt, lthy5) = prove_eqvt raw_tys induct_thm (raw_bn_eqs @ raw_perm_def) (map fst bns) lthy4 val (fv_eqvt, lthy6) = prove_eqvt raw_tys induct_thm (fv_def @ raw_perm_def) (fv @ fvbn) lthy5 val (alpha_eqvt, lthy6a) = Nominal_Eqvt.equivariance alpha_ts alpha_induct alpha_intros lthy6; (* proving alpha equivalence *) val _ = warning "Proving equivalence"; val fv_alpha_all = combine_fv_alpha_bns (fv, fvbn) (alpha_ts_nobn, alpha_ts_bn) bn_nos; val reflps = build_alpha_refl fv_alpha_all alpha_ts induct_thm alpha_eq_iff_simp lthy6a; val alpha_equivp = if !cheat_equivp then map (equivp_hack lthy6a) alpha_ts else build_equivps alpha_ts reflps alpha_induct inject_thms alpha_eq_iff_simp distinct_thms alpha_cases alpha_eqvt lthy6a; val qty_binds = map (fn (_, b, _, _) => b) dts; val qty_names = map Name.of_binding qty_binds; val qty_full_names = map (Long_Name.qualify thy_name) qty_names val (qtys, lthy7) = define_quotient_types qty_binds all_typs alpha_ts_nobn alpha_equivp lthy6a; val const_names = map Name.of_binding (flat (map (fn (_, _, _, t) => map (fn (b, _, _) => b) t) dts)); val raw_consts = flat (map (fn (i, (_, _, l)) => map (fn (cname, dts) => Const (cname, map (Datatype_Aux.typ_of_dtyp descr sorts) dts ---> Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec i))) l) descr); val (consts, const_defs, lthy8) = quotient_lift_consts_export qtys (const_names ~~ raw_consts) lthy7; val _ = warning "Proving respects"; val bns_rsp_pre' = build_fvbv_rsps alpha_ts alpha_induct raw_bn_eqs (map fst bns) lthy8; val (bns_rsp_pre, lthy9) = fold_map ( fn (bn_t, _) => prove_const_rsp qtys Binding.empty [bn_t] (fn _ => resolve_tac bns_rsp_pre' 1)) bns lthy8; val bns_rsp = flat (map snd bns_rsp_pre); fun fv_rsp_tac _ = if !cheat_fv_rsp then Skip_Proof.cheat_tac thy else fvbv_rsp_tac alpha_induct fv_def lthy8 1; val fv_rsps = prove_fv_rsp fv_alpha_all alpha_ts fv_rsp_tac lthy9; val (fv_rsp_pre, lthy10) = fold_map (fn fv => fn ctxt => prove_const_rsp qtys Binding.empty [fv] (fn _ => asm_simp_tac (HOL_ss addsimps fv_rsps) 1) ctxt) (fv @ fvbn) lthy9; val fv_rsp = flat (map snd fv_rsp_pre); val (perms_rsp, lthy11) = prove_const_rsp qtys Binding.empty perms (fn _ => asm_simp_tac (HOL_ss addsimps alpha_eqvt) 1) lthy10; fun alpha_bn_rsp_tac _ = if !cheat_alpha_bn_rsp then Skip_Proof.cheat_tac thy else let val alpha_bn_rsp_pre = prove_alpha_bn_rsp alpha_ts alpha_induct (alpha_eq_iff_simp @ rel_dists @ rel_dists_bn) alpha_equivp exhaust_thms alpha_ts_bn lthy11 in asm_simp_tac (HOL_ss addsimps alpha_bn_rsp_pre) 1 end; val (alpha_bn_rsps, lthy11a) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst] alpha_bn_rsp_tac) alpha_ts_bn lthy11 fun const_rsp_tac _ = let val alpha_alphabn = prove_alpha_alphabn alpha_ts alpha_induct alpha_eq_iff_simp alpha_ts_bn lthy11a in constr_rsp_tac alpha_eq_iff_simp (fv_rsp @ bns_rsp @ reflps @ alpha_alphabn) 1 end val (const_rsps, lthy12) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst] const_rsp_tac) raw_consts lthy11a val qfv_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) (fv @ fvbn) val (qfv_ts, qfv_defs, lthy12a) = quotient_lift_consts_export qtys (qfv_names ~~ (fv @ fvbn)) lthy12; val (qfv_ts_nobn, qfv_ts_bn) = chop (length perms) qfv_ts; val qbn_names = map (fn (b, _ , _) => Name.of_binding b) bn_funs val (qbn_ts, qbn_defs, lthy12b) = quotient_lift_consts_export qtys (qbn_names ~~ raw_bn_funs) lthy12a; val qalpha_bn_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) alpha_ts_bn val (qalpha_ts_bn, qalphabn_defs, lthy12c) = quotient_lift_consts_export qtys (qalpha_bn_names ~~ alpha_ts_bn) lthy12b; val _ = warning "Lifting permutations"; val thy = Local_Theory.exit_global lthy12c; val perm_names = map (fn x => "permute_" ^ x) qty_names val thy' = define_lifted_perms qtys qty_full_names (perm_names ~~ perms) raw_perm_simps thy; val lthy13 = Theory_Target.init NONE thy'; val q_name = space_implode "_" qty_names; fun suffix_bind s = Binding.qualify true q_name (Binding.name s); val _ = warning "Lifting induction"; val constr_names = map (Long_Name.base_name o fst o dest_Const) consts; val q_induct = Rule_Cases.name constr_names (lift_thm qtys lthy13 induct_thm); fun note_suffix s th ctxt = snd (Local_Theory.note ((suffix_bind s, []), th) ctxt); fun note_simp_suffix s th ctxt = snd (Local_Theory.note ((suffix_bind s, [Attrib.internal (K Simplifier.simp_add)]), th) ctxt); val (_, lthy14) = Local_Theory.note ((suffix_bind "induct", [Attrib.internal (K (Rule_Cases.case_names constr_names))]), [Rule_Cases.name constr_names q_induct]) lthy13; val q_inducts = Project_Rule.projects lthy13 (1 upto (length fv)) q_induct val (_, lthy14a) = Local_Theory.note ((suffix_bind "inducts", []), q_inducts) lthy14; val q_perm = map (lift_thm qtys lthy14) raw_perm_def; val lthy15 = note_simp_suffix "perm" q_perm lthy14a; val q_fv = map (lift_thm qtys lthy15) fv_def; val lthy16 = note_simp_suffix "fv" q_fv lthy15; val q_bn = map (lift_thm qtys lthy16) raw_bn_eqs; val lthy17 = note_simp_suffix "bn" q_bn lthy16; val _ = warning "Lifting eq-iff"; (*val _ = map tracing (map PolyML.makestring alpha_eq_iff);*) val eq_iff_unfolded0 = map (Local_Defs.unfold lthy17 @{thms alphas}) alpha_eq_iff_simp val eq_iff_unfolded1 = map (Local_Defs.unfold lthy17 @{thms Pair_eqvt}) eq_iff_unfolded0 val q_eq_iff_pre0 = map (lift_thm qtys lthy17) eq_iff_unfolded1; val q_eq_iff_pre1 = map (Local_Defs.fold lthy17 @{thms Pair_eqvt}) q_eq_iff_pre0 val q_eq_iff_pre2 = map (Local_Defs.fold lthy17 @{thms alphas}) q_eq_iff_pre1 val q_eq_iff = map (Local_Defs.unfold lthy17 (Quotient_Info.id_simps_get lthy17)) q_eq_iff_pre2 val (_, lthy18) = Local_Theory.note ((suffix_bind "eq_iff", []), q_eq_iff) lthy17; val q_dis = map (lift_thm qtys lthy18) rel_dists; val lthy19 = note_simp_suffix "distinct" q_dis lthy18; val q_eqvt = map (lift_thm qtys lthy19) (bv_eqvt @ fv_eqvt); val (_, lthy20) = Local_Theory.note ((Binding.empty, [Attrib.internal (fn _ => Nominal_ThmDecls.eqvt_add)]), q_eqvt) lthy19; val _ = warning "Supports"; val supports = map (prove_supports lthy20 q_perm) consts; val fin_supp = HOLogic.conj_elims (prove_fs lthy20 q_induct supports qtys); val thy3 = Local_Theory.exit_global lthy20; val _ = warning "Instantiating FS"; val lthy21 = Theory_Target.instantiation (qty_full_names, [], @{sort fs}) thy3; fun tac _ = Class.intro_classes_tac [] THEN (ALLGOALS (resolve_tac fin_supp)) val lthy22 = Class.prove_instantiation_instance tac lthy21 val fv_alpha_all = combine_fv_alpha_bns (qfv_ts_nobn, qfv_ts_bn) (alpha_ts_nobn, qalpha_ts_bn) bn_nos; val (names, supp_eq_t) = supp_eq fv_alpha_all; val _ = warning "Support Equations"; fun supp_eq_tac' _ = if !cheat_supp_eq then Skip_Proof.cheat_tac thy else supp_eq_tac q_induct q_fv q_perm q_eq_iff lthy22 1; val q_supp = HOLogic.conj_elims (Goal.prove lthy22 names [] supp_eq_t supp_eq_tac') handle e => let val _ = warning ("Support eqs failed") in [] end; val lthy23 = note_suffix "supp" q_supp lthy22;in (0, lthy23)end handle TEST ctxt => (0, ctxt)*}section {* Preparing and parsing of the specification *}ML {* (* parsing the datatypes and declaring *)(* constructors in the local theory *)fun prepare_dts dt_strs lthy = let val thy = ProofContext.theory_of lthy fun mk_type full_tname tvrs = Type (full_tname, map (fn a => TVar ((a, 0), [])) tvrs) fun prep_cnstr full_tname tvs (cname, anno_tys, mx, _) = let val tys = map (Syntax.read_typ lthy o snd) anno_tys val ty = mk_type full_tname tvs in ((cname, tys ---> ty, mx), (cname, tys, mx)) end fun prep_dt (tvs, tname, mx, cnstrs) = let val full_tname = Sign.full_name thy tname val (cnstrs', cnstrs'') = split_list (map (prep_cnstr full_tname tvs) cnstrs) in (cnstrs', (tvs, tname, mx, cnstrs'')) end val (cnstrs, dts) = split_list (map prep_dt dt_strs)in lthy |> Local_Theory.theory (Sign.add_consts_i (flat cnstrs)) |> pair dtsend*}ML {*(* parsing the binding function specification and *)(* declaring the functions in the local theory *)fun prepare_bn_funs bn_fun_strs bn_eq_strs lthy =let val ((bn_funs, bn_eqs), _) = Specification.read_spec bn_fun_strs bn_eq_strs lthy fun prep_bn_fun ((bn, T), mx) = (bn, T, mx) val bn_funs' = map prep_bn_fun bn_funsin lthy |> Local_Theory.theory (Sign.add_consts_i bn_funs') |> pair (bn_funs', bn_eqs) end *}text {* associates every SOME with the index in the list; drops NONEs *}ML {*fun indexify xs =let fun mapp _ [] = [] | mapp i (NONE :: xs) = mapp (i + 1) xs | mapp i (SOME x :: xs) = (x, i) :: mapp (i + 1) xsin mapp 0 xs endfun index_lookup xs x = case AList.lookup (op=) xs x of SOME x => x | NONE => error ("Cannot find " ^ x ^ " as argument annotation.");*}ML {*fun prepare_bclauses dt_strs lthy = let val annos_bclauses = get_cnstrs dt_strs |> map (map (fn (_, antys, _, bns) => (map fst antys, bns))) fun prep_binder env bn_str = case (Syntax.read_term lthy bn_str) of Free (x, _) => (NONE, index_lookup env x) | Const (a, T) $ Free (x, _) => (SOME (Const (a, T)), index_lookup env x) | _ => error ("The term " ^ bn_str ^ " is not allowed as binding function.") fun prep_body env bn_str = index_lookup env bn_str fun prep_mode "bind" = BLst | prep_mode "bind_set" = BSet | prep_mode "bind_res" = BRes fun prep_bclause env (mode, binders, bodies) = let val binders' = map (prep_binder env) binders val bodies' = map (prep_body env) bodies in prep_mode mode (binders', bodies') end fun prep_bclauses (annos, bclause_strs) = let val env = indexify annos (* for every label, associate the index *) in map (prep_bclause env) bclause_strs endin map (map prep_bclauses) annos_bclausesend*}text {* adds an empty binding clause for every argument that is not already part of a binding clause*}ML {*fun included i bcs = let fun incl (BEmy j) = i = j | incl (BLst (bns, bds)) = (member (op =) (map snd bns) i) orelse (member (op =) bds i) | incl (BSet (bns, bds)) = (member (op =) (map snd bns) i) orelse (member (op =) bds i) | incl (BRes (bns, bds)) = (member (op =) (map snd bns) i) orelse (member (op =) bds i)in exists incl bcs end*}ML {* fun complete dt_strs bclauses = let val args = get_cnstrs dt_strs |> map (map (fn (_, antys, _, _) => length antys)) fun complt n bcs = let fun add bcs i = (if included i bcs then [] else [BEmy i]) in bcs @ (flat (map_range (add bcs) n)) endin map2 (map2 complt) args bclausesend*}ML {*fun nominal_datatype2_cmd (dt_strs, bn_fun_strs, bn_eq_strs) lthy = let fun prep_typ (tvs, tname, mx, _) = (tname, length tvs, mx) val lthy0 = Local_Theory.theory (Sign.add_types (map prep_typ dt_strs)) lthy val (dts, lthy1) = prepare_dts dt_strs lthy0 val ((bn_funs, bn_eqs), lthy2) = prepare_bn_funs bn_fun_strs bn_eq_strs lthy1 val bclauses = prepare_bclauses dt_strs lthy2 val bclauses' = complete dt_strs bclauses in nominal_datatype2 dts bn_funs bn_eqs bclauses' lthy |> sndend(* Command Keyword *)val _ = OuterSyntax.local_theory "nominal_datatype" "test" OuterKeyword.thy_decl (main_parser >> nominal_datatype2_cmd)*}(*atom_decl namenominal_datatype lam = Var name| App lam lam| Lam x::name t::lam bind_set x in t| Let p::pt t::lam bind_set "bn p" in tand pt = P1 name| P2 pt ptbinder bn::"pt \<Rightarrow> atom set"where "bn (P1 x) = {atom x}"| "bn (P2 p1 p2) = bn p1 \<union> bn p2"find_theorems Var_rawthm lam_pt.bnthm lam_pt.fv[simplified lam_pt.supp(1-2)]thm lam_pt.eq_iffthm lam_pt.inductthm lam_pt.permnominal_datatype exp = EVar name| EUnit| EPair q1::exp q2::exp| ELetRec l::lrbs e::exp bind "b_lrbs l" in e land fnclause = K x::name p::pat f::exp bind_res "b_pat p" in fand fnclauses = S fnclause| ORs fnclause fnclausesand lrb = Clause fnclausesand lrbs = Single lrb| More lrb lrbsand pat = PVar name| PUnit| PPair pat patbinder b_lrbs :: "lrbs \<Rightarrow> atom list" and b_pat :: "pat \<Rightarrow> atom set" and b_fnclauses :: "fnclauses \<Rightarrow> atom list" and b_fnclause :: "fnclause \<Rightarrow> atom list" and b_lrb :: "lrb \<Rightarrow> atom list"where "b_lrbs (Single l) = b_lrb l"| "b_lrbs (More l ls) = append (b_lrb l) (b_lrbs ls)"| "b_pat (PVar x) = {atom x}"| "b_pat (PUnit) = {}"| "b_pat (PPair p1 p2) = b_pat p1 \<union> b_pat p2"| "b_fnclauses (S fc) = (b_fnclause fc)"| "b_fnclauses (ORs fc fcs) = append (b_fnclause fc) (b_fnclauses fcs)"| "b_lrb (Clause fcs) = (b_fnclauses fcs)"| "b_fnclause (K x pat exp) = [atom x]"thm exp_fnclause_fnclauses_lrb_lrbs_pat.bnthm exp_fnclause_fnclauses_lrb_lrbs_pat.fvthm exp_fnclause_fnclauses_lrb_lrbs_pat.eq_iffthm exp_fnclause_fnclauses_lrb_lrbs_pat.inductthm exp_fnclause_fnclauses_lrb_lrbs_pat.permnominal_datatype ty = Vr "name"| Fn "ty" "ty"and tys = Al xs::"name fset" t::"ty" bind_res xs in tthm ty_tys.fv[simplified ty_tys.supp]thm ty_tys.eq_iff*)(* some further tests *)(*nominal_datatype ty2 = Vr2 "name"| Fn2 "ty2" "ty2"nominal_datatype tys2 = All2 xs::"name fset" ty::"ty2" bind_res xs in tynominal_datatype lam2 = Var2 "name"| App2 "lam2" "lam2 list"| Lam2 x::"name" t::"lam2" bind x in t*)end