now also final step is proved - the supp of lambdas is now completely characterised
(* Title: Nominal2_Eqvt
Authors: Brian Huffman, Christian Urban
Equivariance, Supp and Fresh Lemmas for Operators.
*)
theory Nominal2_Eqvt
imports Nominal2_Base
uses ("nominal_thmdecls.ML")
begin
section {* Logical Operators *}
lemma eq_eqvt:
shows "p \<bullet> (x = y) \<longleftrightarrow> (p \<bullet> x) = (p \<bullet> y)"
unfolding permute_eq_iff permute_bool_def ..
lemma if_eqvt:
shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)"
by (simp add: permute_fun_def permute_bool_def)
lemma True_eqvt:
shows "p \<bullet> True = True"
unfolding permute_bool_def ..
lemma False_eqvt:
shows "p \<bullet> False = False"
unfolding permute_bool_def ..
lemma imp_eqvt:
shows "p \<bullet> (A \<longrightarrow> B) = ((p \<bullet> A) \<longrightarrow> (p \<bullet> B))"
by (simp add: permute_bool_def)
lemma conj_eqvt:
shows "p \<bullet> (A \<and> B) = ((p \<bullet> A) \<and> (p \<bullet> B))"
by (simp add: permute_bool_def)
lemma disj_eqvt:
shows "p \<bullet> (A \<or> B) = ((p \<bullet> A) \<or> (p \<bullet> B))"
by (simp add: permute_bool_def)
lemma Not_eqvt:
shows "p \<bullet> (\<not> A) = (\<not> (p \<bullet> A))"
by (simp add: permute_bool_def)
lemma all_eqvt:
shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. p \<bullet> P (- p \<bullet> x))"
unfolding permute_fun_def permute_bool_def
by (auto, drule_tac x="p \<bullet> x" in spec, simp)
lemma ex_eqvt:
shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))"
unfolding permute_fun_def permute_bool_def
by (auto, rule_tac x="p \<bullet> x" in exI, simp)
lemma ex1_eqvt:
shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. p \<bullet> P (- p \<bullet> x))"
unfolding Ex1_def ex_eqvt conj_eqvt all_eqvt imp_eqvt eq_eqvt
by simp
lemma the_eqvt:
assumes unique: "\<exists>!x. P x"
shows "p \<bullet> (THE x. P x) = (THE x. p \<bullet> P (- p \<bullet> x))"
apply(rule the1_equality [symmetric])
apply(simp add: ex1_eqvt[symmetric])
apply(simp add: permute_bool_def unique)
apply(simp add: permute_bool_def)
apply(rule theI'[OF unique])
done
section {* Set Operations *}
lemma mem_eqvt:
shows "p \<bullet> (x \<in> A) \<longleftrightarrow> (p \<bullet> x) \<in> (p \<bullet> A)"
unfolding mem_def permute_fun_def by simp
lemma not_mem_eqvt:
shows "p \<bullet> (x \<notin> A) \<longleftrightarrow> (p \<bullet> x) \<notin> (p \<bullet> A)"
unfolding mem_def permute_fun_def by (simp add: Not_eqvt)
lemma Collect_eqvt:
shows "p \<bullet> {x. P x} = {x. p \<bullet> (P (-p \<bullet> x))}"
unfolding Collect_def permute_fun_def ..
lemma empty_eqvt:
shows "p \<bullet> {} = {}"
unfolding empty_def Collect_eqvt False_eqvt ..
lemma supp_set_empty:
shows "supp {} = {}"
by (simp add: supp_def empty_eqvt)
lemma fresh_set_empty:
shows "a \<sharp> {}"
by (simp add: fresh_def supp_set_empty)
lemma UNIV_eqvt:
shows "p \<bullet> UNIV = UNIV"
unfolding UNIV_def Collect_eqvt True_eqvt ..
lemma union_eqvt:
shows "p \<bullet> (A \<union> B) = (p \<bullet> A) \<union> (p \<bullet> B)"
unfolding Un_def Collect_eqvt disj_eqvt mem_eqvt by simp
lemma inter_eqvt:
shows "p \<bullet> (A \<inter> B) = (p \<bullet> A) \<inter> (p \<bullet> B)"
unfolding Int_def Collect_eqvt conj_eqvt mem_eqvt by simp
lemma Diff_eqvt:
fixes A B :: "'a::pt set"
shows "p \<bullet> (A - B) = p \<bullet> A - p \<bullet> B"
unfolding set_diff_eq Collect_eqvt conj_eqvt Not_eqvt mem_eqvt by simp
lemma Compl_eqvt:
fixes A :: "'a::pt set"
shows "p \<bullet> (- A) = - (p \<bullet> A)"
unfolding Compl_eq_Diff_UNIV Diff_eqvt UNIV_eqvt ..
lemma insert_eqvt:
shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)"
unfolding permute_set_eq_image image_insert ..
lemma vimage_eqvt:
shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)"
unfolding vimage_def permute_fun_def [where f=f]
unfolding Collect_eqvt mem_eqvt ..
lemma image_eqvt:
shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)"
unfolding permute_set_eq_image
unfolding permute_fun_def [where f=f]
by (simp add: image_image)
lemma finite_permute_iff:
shows "finite (p \<bullet> A) \<longleftrightarrow> finite A"
unfolding permute_set_eq_vimage
using bij_permute by (rule finite_vimage_iff)
lemma finite_eqvt:
shows "p \<bullet> finite A = finite (p \<bullet> A)"
unfolding finite_permute_iff permute_bool_def ..
lemma supp_eqvt: "p \<bullet> supp S = supp (p \<bullet> S)"
unfolding supp_def
by (simp only: Collect_eqvt Not_eqvt finite_eqvt eq_eqvt
permute_eqvt [of p] swap_eqvt permute_minus_cancel)
section {* List Operations *}
lemma append_eqvt:
shows "p \<bullet> (xs @ ys) = (p \<bullet> xs) @ (p \<bullet> ys)"
by (induct xs) auto
lemma supp_append:
shows "supp (xs @ ys) = supp xs \<union> supp ys"
by (induct xs) (auto simp add: supp_Nil supp_Cons)
lemma fresh_append:
shows "a \<sharp> (xs @ ys) \<longleftrightarrow> a \<sharp> xs \<and> a \<sharp> ys"
by (induct xs) (simp_all add: fresh_Nil fresh_Cons)
lemma rev_eqvt:
shows "p \<bullet> (rev xs) = rev (p \<bullet> xs)"
by (induct xs) (simp_all add: append_eqvt)
lemma supp_rev:
shows "supp (rev xs) = supp xs"
by (induct xs) (auto simp add: supp_append supp_Cons supp_Nil)
lemma fresh_rev:
shows "a \<sharp> rev xs \<longleftrightarrow> a \<sharp> xs"
by (induct xs) (auto simp add: fresh_append fresh_Cons fresh_Nil)
lemma set_eqvt:
shows "p \<bullet> (set xs) = set (p \<bullet> xs)"
by (induct xs) (simp_all add: empty_eqvt insert_eqvt)
(* needs finite support premise
lemma supp_set:
fixes x :: "'a::pt"
shows "supp (set xs) = supp xs"
*)
section {* Product Operations *}
lemma fst_eqvt:
"p \<bullet> (fst x) = fst (p \<bullet> x)"
by (cases x) simp
lemma snd_eqvt:
"p \<bullet> (snd x) = snd (p \<bullet> x)"
by (cases x) simp
section {* Units *}
lemma supp_unit:
shows "supp () = {}"
by (simp add: supp_def)
lemma fresh_unit:
shows "a \<sharp> ()"
by (simp add: fresh_def supp_unit)
section {* Equivariance automation *}
text {*
below is a construction site for a conversion that
pushes permutations into a term as far as possible
*}
text {* Setup of the theorem attributes @{text eqvt} and @{text eqvt_force} *}
use "nominal_thmdecls.ML"
setup "NominalThmDecls.setup"
lemmas [eqvt] =
(* connectives *)
eq_eqvt if_eqvt imp_eqvt disj_eqvt conj_eqvt Not_eqvt
True_eqvt False_eqvt
imp_eqvt [folded induct_implies_def]
(* datatypes *)
permute_prod.simps
fst_eqvt snd_eqvt
(* sets *)
empty_eqvt UNIV_eqvt union_eqvt inter_eqvt
Diff_eqvt Compl_eqvt insert_eqvt
(* A simple conversion pushing permutations into a term *)
ML {*
fun OF1 thm1 thm2 = thm2 RS thm1
fun get_eqvt_thms ctxt =
map (OF1 @{thm eq_reflection}) (NominalThmDecls.get_eqvt_thms ctxt)
*}
ML {*
fun eqvt_conv ctxt ctrm =
case (term_of ctrm) of
(Const (@{const_name "permute"}, _) $ _ $ t) =>
(if is_Const (head_of t)
then (More_Conv.rewrs_conv (get_eqvt_thms ctxt)
then_conv eqvt_conv ctxt) ctrm
else Conv.comb_conv (eqvt_conv ctxt) ctrm)
| _ $ _ => Conv.comb_conv (eqvt_conv ctxt) ctrm
| Abs _ => Conv.abs_conv (fn (_, ctxt) => eqvt_conv ctxt) ctxt ctrm
| _ => Conv.all_conv ctrm
*}
ML {*
fun eqvt_tac ctxt =
CONVERSION (More_Conv.bottom_conv (fn ctxt => eqvt_conv ctxt) ctxt)
*}
lemma "p \<bullet> (A \<longrightarrow> B = (C::bool))"
apply(tactic {* eqvt_tac @{context} 1 *})
oops
text {*
Another conversion for pushing permutations into a term.
It is designed not to apply rules like @{term permute_pure} to
applications or abstractions, only to constants or free
variables. Thus permutations are not removed too early, and they
have a chance to cancel with bound variables.
*}
definition
"unpermute p = permute (- p)"
lemma push_apply:
fixes f :: "'a::pt \<Rightarrow> 'b::pt" and x :: "'a::pt"
shows "p \<bullet> (f x) \<equiv> (p \<bullet> f) (p \<bullet> x)"
unfolding permute_fun_def by simp
lemma push_lambda:
fixes f :: "'a::pt \<Rightarrow> 'b::pt"
shows "p \<bullet> (\<lambda>x. f x) \<equiv> (\<lambda>x. p \<bullet> (f (unpermute p x)))"
unfolding permute_fun_def unpermute_def by simp
lemma push_bound:
shows "p \<bullet> unpermute p x \<equiv> x"
unfolding unpermute_def by simp
ML {*
structure PushData = Named_Thms
(
val name = "push"
val description = "push permutations"
)
local
fun push_apply_conv ctxt ct =
case (term_of ct) of
(Const (@{const_name "permute"}, _) $ _ $ (_ $ _)) =>
let
val (perm, t) = Thm.dest_comb ct
val (_, p) = Thm.dest_comb perm
val (f, x) = Thm.dest_comb t
val a = ctyp_of_term x;
val b = ctyp_of_term t;
val ty_insts = map SOME [b, a]
val term_insts = map SOME [p, f, x]
in
Drule.instantiate' ty_insts term_insts @{thm push_apply}
end
| _ => Conv.no_conv ct
fun push_lambda_conv ctxt ct =
case (term_of ct) of
(Const (@{const_name "permute"}, _) $ _ $ Abs _) =>
Conv.rewr_conv @{thm push_lambda} ct
| _ => Conv.no_conv ct
in
fun push_conv ctxt ct =
Conv.first_conv
[ Conv.rewr_conv @{thm push_bound},
push_apply_conv ctxt
then_conv Conv.comb_conv (push_conv ctxt),
push_lambda_conv ctxt
then_conv Conv.abs_conv (fn (v, ctxt) => push_conv ctxt) ctxt,
More_Conv.rewrs_conv (PushData.get ctxt),
Conv.all_conv
] ct
fun push_tac ctxt =
CONVERSION (More_Conv.bottom_conv (fn ctxt => push_conv ctxt) ctxt)
end
*}
setup PushData.setup
declare permute_pure [THEN eq_reflection, push]
lemma push_eq [THEN eq_reflection, push]:
"p \<bullet> (op =) = (op =)"
by (simp add: expand_fun_eq permute_fun_def eq_eqvt)
lemma push_All [THEN eq_reflection, push]:
"p \<bullet> All = All"
by (simp add: expand_fun_eq permute_fun_def all_eqvt)
lemma push_Ex [THEN eq_reflection, push]:
"p \<bullet> Ex = Ex"
by (simp add: expand_fun_eq permute_fun_def ex_eqvt)
lemma "p \<bullet> (A \<longrightarrow> B = (C::bool))"
apply (tactic {* push_tac @{context} 1 *})
oops
lemma "p \<bullet> (\<lambda>x. A \<longrightarrow> B x = (C::bool)) = foo"
apply (tactic {* push_tac @{context} 1 *})
oops
lemma "p \<bullet> (\<lambda>x y. \<exists>z. x = z \<and> x = y \<longrightarrow> z \<noteq> x) = foo"
apply (tactic {* push_tac @{context} 1 *})
oops
lemma "p \<bullet> (\<lambda>f x. f (g (f x))) = foo"
apply (tactic {* push_tac @{context} 1 *})
oops
end