theory QuotList
imports QuotScript List
begin
lemma LIST_map_id:
shows "map (\<lambda>x. x) = (\<lambda>x. x)"
by simp
fun
list_rel
where
"list_rel R [] [] = True"
| "list_rel R (x#xs) [] = False"
| "list_rel R [] (x#xs) = False"
| "list_rel R (x#xs) (y#ys) = (R x y \<and> list_rel R xs ys)"
lemma list_rel_EQ:
shows "list_rel (op =) \<equiv> (op =)"
apply(rule eq_reflection)
unfolding expand_fun_eq
apply(rule allI)+
apply(induct_tac x xa rule: list_induct2')
apply(simp_all)
done
lemma list_rel_REFL:
assumes a: "\<And>x y. R x y = (R x = R y)"
shows "list_rel R x x"
by (induct x) (auto simp add: a)
lemma LIST_equivp:
assumes a: "equivp R"
shows "equivp (list_rel R)"
unfolding equivp_def
apply(rule allI)+
apply(induct_tac x y rule: list_induct2')
apply(simp)
apply(simp add: expand_fun_eq)
apply(metis list_rel.simps(1) list_rel.simps(2))
apply(simp add: expand_fun_eq)
apply(metis list_rel.simps(1) list_rel.simps(2))
apply(simp add: expand_fun_eq)
apply(rule iffI)
apply(rule allI)
apply(case_tac x)
apply(simp)
apply(simp)
using a
apply(unfold equivp_def)
apply(auto)[1]
apply(metis list_rel.simps(4))
done
lemma list_rel_REL:
assumes q: "Quotient R Abs Rep"
shows "list_rel R r s = (list_rel R r r \<and> list_rel R s s \<and> (map Abs r = map Abs s))"
apply(induct r s rule: list_induct2')
apply(simp_all)
using Quotient_REL[OF q]
apply(metis)
done
lemma list_quotient:
assumes q: "Quotient R Abs Rep"
shows "Quotient (list_rel R) (map Abs) (map Rep)"
unfolding Quotient_def
apply(rule conjI)
apply(rule allI)
apply(induct_tac a)
apply(simp)
apply(simp add: Quotient_ABS_REP[OF q])
apply(rule conjI)
apply(rule allI)
apply(induct_tac a)
apply(simp)
apply(simp)
apply(simp add: Quotient_REP_reflp[OF q])
apply(rule allI)+
apply(rule list_rel_REL[OF q])
done
lemma CONS_PRS:
assumes q: "Quotient R Abs Rep"
shows "(h#t) = (map Abs) ((Rep h)#(map Rep t))"
by (induct t) (simp_all add: Quotient_ABS_REP[OF q])
lemma CONS_RSP:
assumes q: "Quotient R Abs Rep"
and a: "R h1 h2" "list_rel R t1 t2"
shows "list_rel R (h1#t1) (h2#t2)"
using a by (auto)
lemma NIL_PRS:
assumes q: "Quotient R Abs Rep"
shows "[] = (map Abs [])"
by (simp)
lemma NIL_RSP:
assumes q: "Quotient R Abs Rep"
shows "list_rel R [] []"
by simp
lemma MAP_PRS:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "map f l = (map Abs2) (map ((Abs1 ---> Rep2) f) (map Rep1 l))"
by (induct l)
(simp_all add: Quotient_ABS_REP[OF q1] Quotient_ABS_REP[OF q2])
lemma MAP_RSP:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
and a: "(R1 ===> R2) f1 f2"
and b: "list_rel R1 l1 l2"
shows "list_rel R2 (map f1 l1) (map f2 l2)"
using b a
by (induct l1 l2 rule: list_induct2')
(simp_all)
end
(*
val LENGTH_PRS = store_thm
("LENGTH_PRS",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!l. LENGTH l = LENGTH (MAP rep l)--),
val LENGTH_RSP = store_thm
("LENGTH_RSP",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!l1 l2.
(LIST_REL R) l1 l2 ==>
(LENGTH l1 = LENGTH l2)--),
val APPEND_PRS = store_thm
("APPEND_PRS",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!l m. APPEND l m = MAP abs (APPEND (MAP rep l) (MAP rep m))--),
val APPEND_RSP = store_thm
("APPEND_RSP",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!l1 l2 m1 m2.
(LIST_REL R) l1 l2 /\ (LIST_REL R) m1 m2 ==>
(LIST_REL R) (APPEND l1 m1) (APPEND l2 m2)--),
val FLAT_PRS = store_thm
("FLAT_PRS",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!l. FLAT l = MAP abs (FLAT (MAP (MAP rep) l))--),
val FLAT_RSP = store_thm
("FLAT_RSP",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!l1 l2.
LIST_REL (LIST_REL R) l1 l2 ==>
(LIST_REL R) (FLAT l1) (FLAT l2)--),
val REVERSE_PRS = store_thm
("REVERSE_PRS",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!l. REVERSE l = MAP abs (REVERSE (MAP rep l))--),
val REVERSE_RSP = store_thm
("REVERSE_RSP",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!l1 l2.
LIST_REL R l1 l2 ==>
(LIST_REL R) (REVERSE l1) (REVERSE l2)--),
val FILTER_PRS = store_thm
("FILTER_PRS",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!P l. FILTER P l = (MAP abs) (FILTER ((abs --> I) P) (MAP rep l))
--),
val FILTER_RSP = store_thm
("FILTER_RSP",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!P1 P2 l1 l2.
(R ===> $=) P1 P2 /\ (LIST_REL R) l1 l2 ==>
(LIST_REL R) (FILTER P1 l1) (FILTER P2 l2)--),
val NULL_PRS = store_thm
("NULL_PRS",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!l. NULL l = NULL (MAP rep l)--),
val NULL_RSP = store_thm
("NULL_RSP",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!l1 l2.
LIST_REL R l1 l2 ==>
(NULL l1 = NULL l2)--),
val SOME_EL_PRS = store_thm
("SOME_EL_PRS",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!l P. SOME_EL P l = SOME_EL ((abs --> I) P) (MAP rep l)--),
val SOME_EL_RSP = store_thm
("SOME_EL_RSP",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!l1 l2 P1 P2.
(R ===> $=) P1 P2 /\ (LIST_REL R) l1 l2 ==>
(SOME_EL P1 l1 = SOME_EL P2 l2)--),
val ALL_EL_PRS = store_thm
("ALL_EL_PRS",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!l P. ALL_EL P l = ALL_EL ((abs --> I) P) (MAP rep l)--),
val ALL_EL_RSP = store_thm
("ALL_EL_RSP",
(--!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
!l1 l2 P1 P2.
(R ===> $=) P1 P2 /\ (LIST_REL R) l1 l2 ==>
(ALL_EL P1 l1 = ALL_EL P2 l2)--),
val FOLDL_PRS = store_thm
("FOLDL_PRS",
(--!R1 (abs1:'a -> 'c) rep1. QUOTIENT R1 abs1 rep1 ==>
!R2 (abs2:'b -> 'd) rep2. QUOTIENT R2 abs2 rep2 ==>
!l f e. FOLDL f e l =
abs1 (FOLDL ((abs1 --> abs2 --> rep1) f)
(rep1 e)
(MAP rep2 l))--),
val FOLDL_RSP = store_thm
("FOLDL_RSP",
(--!R1 (abs1:'a -> 'c) rep1. QUOTIENT R1 abs1 rep1 ==>
!R2 (abs2:'b -> 'd) rep2. QUOTIENT R2 abs2 rep2 ==>
!l1 l2 f1 f2 e1 e2.
(R1 ===> R2 ===> R1) f1 f2 /\
R1 e1 e2 /\ (LIST_REL R2) l1 l2 ==>
R1 (FOLDL f1 e1 l1) (FOLDL f2 e2 l2)--),
val FOLDR_PRS = store_thm
("FOLDR_PRS",
(--!R1 (abs1:'a -> 'c) rep1. QUOTIENT R1 abs1 rep1 ==>
!R2 (abs2:'b -> 'd) rep2. QUOTIENT R2 abs2 rep2 ==>
!l f e. FOLDR f e l =
abs2 (FOLDR ((abs1 --> abs2 --> rep2) f)
(rep2 e)
(MAP rep1 l))--),
val FOLDR_RSP = store_thm
("FOLDR_RSP",
(--!R1 (abs1:'a -> 'c) rep1. QUOTIENT R1 abs1 rep1 ==>
!R2 (abs2:'b -> 'd) rep2. QUOTIENT R2 abs2 rep2 ==>
!l1 l2 f1 f2 e1 e2.
(R1 ===> R2 ===> R2) f1 f2 /\
R2 e1 e2 /\ (LIST_REL R1) l1 l2 ==>
R2 (FOLDR f1 e1 l1) (FOLDR f2 e2 l2)--),
*)