generalised the fs-instance lemma (not just fsets of atoms are finitely supported, but also fsets of finitely supported elements)
theory Nominal2_FSet
imports "../Nominal-General/Nominal2_Supp"
FSet
begin
lemma permute_rsp_fset[quot_respect]:
"(op = ===> list_eq ===> list_eq) permute permute"
apply (simp add: eqvts[symmetric])
apply clarify
apply (subst permute_minus_cancel(1)[symmetric, of "xb"])
apply (subst mem_eqvt[symmetric])
apply (subst (2) permute_minus_cancel(1)[symmetric, of "xb"])
apply (subst mem_eqvt[symmetric])
apply (erule_tac x="- x \<bullet> xb" in allE)
apply simp
done
instantiation fset :: (pt) pt
begin
quotient_definition
"permute_fset :: perm \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is
"permute :: perm \<Rightarrow> 'a list \<Rightarrow> 'a list"
instance
proof
fix x :: "'a fset" and p q :: "perm"
show "0 \<bullet> x = x"
by (lifting permute_zero [where 'a="'a list"])
show "(p + q) \<bullet> x = p \<bullet> q \<bullet> x"
by (lifting permute_plus [where 'a="'a list"])
qed
end
lemma permute_fset[simp, eqvt]:
fixes S::"('a::pt) fset"
shows "(p \<bullet> {||}) = ({||} ::('a::pt) fset)"
and "p \<bullet> finsert x S = finsert (p \<bullet> x) (p \<bullet> S)"
by (lifting permute_list.simps)
lemma fmap_eqvt[eqvt]:
shows "p \<bullet> (fmap f S) = fmap (p \<bullet> f) (p \<bullet> S)"
by (lifting map_eqvt)
lemma fset_to_set_eqvt[eqvt]:
shows "p \<bullet> (fset_to_set S) = fset_to_set (p \<bullet> S)"
by (lifting set_eqvt)
lemma fin_fset_to_set[simp]:
shows "finite (fset_to_set S)"
by (induct S) (simp_all)
lemma supp_fset_to_set:
shows "supp (fset_to_set S) = supp S"
apply (simp add: supp_def)
apply (simp add: eqvts)
apply (simp add: fset_cong)
done
lemma supp_finsert:
fixes x::"'a::fs"
shows "supp (finsert x S) = supp x \<union> supp S"
apply(subst supp_fset_to_set[symmetric])
apply(simp add: supp_fset_to_set)
apply(simp add: supp_of_fin_insert)
apply(simp add: supp_fset_to_set)
done
lemma supp_fempty:
shows "supp {||} = {}"
unfolding supp_def
by simp
instance fset :: (fs) fs
apply (default)
apply (induct_tac x rule: fset_induct)
apply (simp add: supp_fempty)
apply (simp add: supp_finsert)
apply (simp add: finite_supp)
done
lemma atom_fmap_cong:
shows "fmap atom x = fmap atom y \<longleftrightarrow> x = y"
apply(rule inj_fmap_eq_iff)
apply(simp add: inj_on_def)
done
lemma supp_fmap_atom:
shows "supp (fmap atom S) = supp S"
unfolding supp_def
apply(perm_simp)
apply(simp add: atom_fmap_cong)
done
lemma supp_at_fset:
fixes S::"('a::at_base) fset"
shows "supp S = fset_to_set (fmap atom S)"
apply (induct S)
apply (simp add: supp_fempty)
apply (simp add: supp_finsert)
apply (simp add: supp_at_base)
done
end