Quot/Examples/IntEx.thy
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Thu, 21 Jan 2010 11:11:22 +0100
changeset 910 b91782991dc8
parent 909 3e7a6ec549d1
child 911 95ee248b3832
permissions -rw-r--r--
Automatic cleaning of Bexeq<->Ex1 theorems.

theory IntEx
imports "../QuotProd" "../QuotList"
begin

fun
  intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" (infix "\<approx>" 50)
where
  "intrel (x, y) (u, v) = (x + v = u + y)"

quotient_type 
  my_int = "nat \<times> nat" / intrel
  apply(unfold equivp_def)
  apply(auto simp add: mem_def expand_fun_eq)
  done

quotient_definition
  "ZERO :: my_int"
as
  "(0::nat, 0::nat)"

quotient_definition
  "ONE :: my_int"
as
  "(1::nat, 0::nat)"

fun
  my_plus :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
  "my_plus (x, y) (u, v) = (x + u, y + v)"

quotient_definition
  "PLUS :: my_int \<Rightarrow> my_int \<Rightarrow> my_int"
as
  "my_plus"

fun
  my_neg :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
  "my_neg (x, y) = (y, x)"

quotient_definition
  "NEG :: my_int \<Rightarrow> my_int"
as
  "my_neg"

definition
  MINUS :: "my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
  "MINUS z w = PLUS z (NEG w)"

fun
  my_mult :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
  "my_mult (x, y) (u, v) = (x*u + y*v, x*v + y*u)"

quotient_definition
  "MULT :: my_int \<Rightarrow> my_int \<Rightarrow> my_int"
as
  "my_mult"


(* NOT SURE WETHER THIS DEFINITION IS CORRECT *)
fun
  my_le :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool"
where
  "my_le (x, y) (u, v) = (x+v \<le> u+y)"

quotient_definition
   "LE :: my_int \<Rightarrow> my_int \<Rightarrow> bool"
as
  "my_le"

term LE
thm LE_def


definition
  LESS :: "my_int \<Rightarrow> my_int \<Rightarrow> bool"
where
  "LESS z w = (LE z w \<and> z \<noteq> w)"

term LESS
thm LESS_def

definition
  ABS :: "my_int \<Rightarrow> my_int"
where
  "ABS i = (if (LESS i ZERO) then (NEG i) else i)"

definition
  SIGN :: "my_int \<Rightarrow> my_int"
where
 "SIGN i = (if i = ZERO then ZERO else if (LESS ZERO i) then ONE else (NEG ONE))"

print_quotconsts

lemma plus_sym_pre:
  shows "my_plus a b \<approx> my_plus b a"
  apply(cases a)
  apply(cases b)
  apply(auto)
  done

lemma plus_rsp[quot_respect]:
  shows "(intrel ===> intrel ===> intrel) my_plus my_plus"
by (simp)

lemma neg_rsp[quot_respect]:
  shows "(op \<approx> ===> op \<approx>) my_neg my_neg"
by simp

lemma test1: "my_plus a b = my_plus a b"
apply(rule refl)
done

lemma "PLUS a b = PLUS a b"
apply(lifting_setup test1)
apply(regularize)
apply(injection)
apply(cleaning)
done

thm lambda_prs

lemma test2: "my_plus a = my_plus a"
apply(rule refl)
done

lemma "PLUS a = PLUS a"
apply(lifting_setup test2)
apply(rule impI)
apply(rule ballI)
apply(rule apply_rsp[OF Quotient_my_int plus_rsp])
apply(simp only: in_respects)
apply(injection)
apply(cleaning)
done

lemma test3: "my_plus = my_plus"
apply(rule refl)
done

lemma "PLUS = PLUS"
apply(lifting_setup test3)
apply(rule impI)
apply(rule plus_rsp)
apply(injection)
apply(cleaning)
done


lemma "PLUS a b = PLUS b a"
apply(lifting plus_sym_pre)
done

lemma plus_assoc_pre:
  shows "my_plus (my_plus i j) k \<approx> my_plus i (my_plus j k)"
  apply (cases i)
  apply (cases j)
  apply (cases k)
  apply (simp)
  done

lemma plus_assoc: "PLUS (PLUS x xa) xb = PLUS x (PLUS xa xb)"
apply(lifting plus_assoc_pre)
done

lemma int_induct_raw:
  assumes a: "P (0::nat, 0)"
  and     b: "\<And>i. P i \<Longrightarrow> P (my_plus i (1,0))"
  and     c: "\<And>i. P i \<Longrightarrow> P (my_plus i (my_neg (1,0)))"
  shows      "P x"
  apply(case_tac x) apply(simp)
  apply(rule_tac x="b" in spec)
  apply(rule_tac Nat.induct)
  apply(rule allI)
  apply(rule_tac Nat.induct)
  using a b c apply(auto)
  done

lemma int_induct:
  assumes a: "P ZERO"
  and     b: "\<And>i. P i \<Longrightarrow> P (PLUS i ONE)"
  and     c: "\<And>i. P i \<Longrightarrow> P (PLUS i (NEG ONE))"
  shows      "P x"
  using a b c
  by (lifting int_induct_raw)

lemma ex1tst: "Bexeq (op \<approx>) (\<lambda>x :: nat \<times> nat. x \<approx> x)"
sorry

lemma ex1tst': "\<exists>! (x :: my_int). x = x"
apply(lifting ex1tst)

apply injection
apply (rule quot_respect(9))
apply (rule Quotient_my_int)
done

lemma ho_tst: "foldl my_plus x [] = x"
apply simp
done


term foldl
lemma "foldl PLUS x [] = x"
apply(lifting ho_tst)
done

lemma ho_tst2: "foldl my_plus x (h # t) \<approx> my_plus h (foldl my_plus x t)"
sorry

lemma "foldl PLUS x (h # t) = PLUS h (foldl PLUS x t)"
apply(lifting ho_tst2)
done

lemma ho_tst3: "foldl f (s::nat \<times> nat) ([]::(nat \<times> nat) list) = s"
by simp

lemma "foldl f (x::my_int) ([]::my_int list) = x"
apply(lifting ho_tst3)
done

lemma lam_tst: "(\<lambda>x. (x, x)) y = (y, (y :: nat \<times> nat))"
by simp

(* Don't know how to keep the goal non-contracted... *)
lemma "(\<lambda>x. (x, x)) (y::my_int) = (y, y)"
apply(lifting lam_tst)
done

lemma lam_tst2: "(\<lambda>(y :: nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat). x)"
by simp

lemma
  shows "equivp (op \<approx>)"
  and "equivp ((op \<approx>) ===> (op \<approx>))"
(* Nitpick finds a counterexample! *)
oops

lemma lam_tst3a: "(\<lambda>(y :: nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat). x)"
by auto

lemma id_rsp:
  shows "(R ===> R) id id"
by simp

lemma lam_tst3a_reg: "(op \<approx> ===> op \<approx>) (Babs (Respects op \<approx>) (\<lambda>y. y)) (Babs (Respects op \<approx>) (\<lambda>x. x))"
apply (rule babs_rsp[OF Quotient_my_int])
apply (simp add: id_rsp)
done

lemma "(\<lambda>(y :: my_int). y) = (\<lambda>(x :: my_int). x)"
apply(lifting lam_tst3a)
apply(rule impI)
apply(rule lam_tst3a_reg)
done

lemma lam_tst3b: "(\<lambda>(y :: nat \<times> nat \<Rightarrow> nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat \<Rightarrow> nat \<times> nat). x)"
by auto

lemma "(\<lambda>(y :: my_int => my_int). y) = (\<lambda>(x :: my_int => my_int). x)"
apply(lifting lam_tst3b)
apply(rule impI)
apply(rule babs_rsp[OF fun_quotient[OF Quotient_my_int Quotient_my_int]])
apply(simp add: id_rsp)
done

lemma lam_tst4: "map (\<lambda>x. my_plus x (0,0)) l = l"
apply (induct l)
apply simp
apply (case_tac a)
apply simp
done

lemma "map (\<lambda>x. PLUS x ZERO) l = l"
apply(lifting lam_tst4)
done

end