Ported LF to the generic lambda and solved the simpler _supp cases.
theory LFex
imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "../QuotMain" "Abs"
begin
atom_decl name
atom_decl ident
datatype kind =
Type
| KPi "ty" "name" "kind"
and ty =
TConst "ident"
| TApp "ty" "trm"
| TPi "ty" "name" "ty"
and trm =
Const "ident"
| Var "name"
| App "trm" "trm"
| Lam "ty" "name" "trm"
print_theorems
primrec
rfv_kind :: "kind \<Rightarrow> atom set"
and rfv_ty :: "ty \<Rightarrow> atom set"
and rfv_trm :: "trm \<Rightarrow> atom set"
where
"rfv_kind (Type) = {}"
| "rfv_kind (KPi A x K) = (rfv_ty A) \<union> ((rfv_kind K) - {atom x})"
| "rfv_ty (TConst i) = {atom i}"
| "rfv_ty (TApp A M) = (rfv_ty A) \<union> (rfv_trm M)"
| "rfv_ty (TPi A x B) = (rfv_ty A) \<union> ((rfv_ty B) - {atom x})"
| "rfv_trm (Const i) = {atom i}"
| "rfv_trm (Var x) = {atom x}"
| "rfv_trm (App M N) = (rfv_trm M) \<union> (rfv_trm N)"
| "rfv_trm (Lam A x M) = (rfv_ty A) \<union> ((rfv_trm M) - {atom x})"
print_theorems
instantiation kind and ty and trm :: pt
begin
primrec
permute_kind
and permute_ty
and permute_trm
where
"permute_kind pi Type = Type"
| "permute_kind pi (KPi t n k) = KPi (permute_ty pi t) (pi \<bullet> n) (permute_kind pi k)"
| "permute_ty pi (TConst i) = TConst (pi \<bullet> i)"
| "permute_ty pi (TApp A M) = TApp (permute_ty pi A) (permute_trm pi M)"
| "permute_ty pi (TPi A x B) = TPi (permute_ty pi A) (pi \<bullet> x) (permute_ty pi B)"
| "permute_trm pi (Const i) = Const (pi \<bullet> i)"
| "permute_trm pi (Var x) = Var (pi \<bullet> x)"
| "permute_trm pi (App M N) = App (permute_trm pi M) (permute_trm pi N)"
| "permute_trm pi (Lam A x M) = Lam (permute_ty pi A) (pi \<bullet> x) (permute_trm pi M)"
lemma rperm_zero_ok: "0 \<bullet> (x :: kind) = x \<and> 0 \<bullet> (y :: ty) = y \<and> 0 \<bullet> (z :: trm) = z"
apply(induct_tac rule: kind_ty_trm.induct)
apply(simp_all)
done
instance
apply default
apply (simp_all only:rperm_zero_ok)
apply(induct_tac[!] x)
apply(simp_all)
apply(induct_tac ty)
apply(simp_all)
apply(induct_tac trm)
apply(simp_all)
apply(induct_tac trm)
apply(simp_all)
done
end
inductive
akind :: "kind \<Rightarrow> kind \<Rightarrow> bool" ("_ \<approx>ki _" [100, 100] 100)
and aty :: "ty \<Rightarrow> ty \<Rightarrow> bool" ("_ \<approx>ty _" [100, 100] 100)
and atrm :: "trm \<Rightarrow> trm \<Rightarrow> bool" ("_ \<approx>tr _" [100, 100] 100)
where
a1: "(Type) \<approx>ki (Type)"
| a2: "\<lbrakk>A \<approx>ty A'; \<exists>pi. (rfv_kind K - {atom x} = rfv_kind K' - {atom x'} \<and> (rfv_kind K - {atom x})\<sharp>* pi \<and> (pi \<bullet> K) \<approx>ki K' \<and> (pi \<bullet> x) = x')\<rbrakk> \<Longrightarrow> (KPi A x K) \<approx>ki (KPi A' x' K')"
| a3: "i = j \<Longrightarrow> (TConst i) \<approx>ty (TConst j)"
| a4: "\<lbrakk>A \<approx>ty A'; M \<approx>tr M'\<rbrakk> \<Longrightarrow> (TApp A M) \<approx>ty (TApp A' M')"
| a5: "\<lbrakk>A \<approx>ty A'; \<exists>pi. (rfv_ty B - {atom x} = rfv_ty B' - {atom x'} \<and> (rfv_ty B - {atom x})\<sharp>* pi \<and> (pi \<bullet> B) \<approx>ty B' \<and> (pi \<bullet> x) = x')\<rbrakk> \<Longrightarrow> (TPi A x B) \<approx>ty (TPi A' x' B')"
| a6: "i = j \<Longrightarrow> (Const i) \<approx>tr (Const j)"
| a7: "x = y \<Longrightarrow> (Var x) \<approx>tr (Var y)"
| a8: "\<lbrakk>M \<approx>tr M'; N \<approx>tr N'\<rbrakk> \<Longrightarrow> (App M N) \<approx>tr (App M' N')"
| a9: "\<lbrakk>A \<approx>ty A'; \<exists>pi. (rfv_trm M - {atom x} = rfv_trm M' - {atom x'} \<and> (rfv_trm M - {atom x})\<sharp>* pi \<and> (pi \<bullet> M) \<approx>tr M' \<and> (pi \<bullet> x) = x')\<rbrakk> \<Longrightarrow> (Lam A x M) \<approx>tr (Lam A' x' M')"
(*
function(sequential)
akind :: "kind \<Rightarrow> kind \<Rightarrow> bool" ("_ \<approx>ki _" [100, 100] 100)
and aty :: "ty \<Rightarrow> ty \<Rightarrow> bool" ("_ \<approx>ty _" [100, 100] 100)
and atrm :: "trm \<Rightarrow> trm \<Rightarrow> bool" ("_ \<approx>tr _" [100, 100] 100)
where
a1: "(Type) \<approx>ki (Type) = True"
| a2: "(KPi A x K) \<approx>ki (KPi A' x' K') = (A \<approx>ty A' \<and> (\<exists>pi. (rfv_kind K - {atom x} = rfv_kind K' - {atom x'} \<and> (rfv_kind K - {atom x})\<sharp>* pi \<and> (pi \<bullet> K) \<approx>ki K' \<and> (pi \<bullet> x) = x')))"
| "_ \<approx>ki _ = False"
| a3: "(TConst i) \<approx>ty (TConst j) = (i = j)"
| a4: "(TApp A M) \<approx>ty (TApp A' M') = (A \<approx>ty A' \<and> M \<approx>tr M')"
| a5: "(TPi A x B) \<approx>ty (TPi A' x' B') = ((A \<approx>ty A') \<and> (\<exists>pi. rfv_ty B - {atom x} = rfv_ty B' - {atom x'} \<and> (rfv_ty B - {atom x})\<sharp>* pi \<and> (pi \<bullet> B) \<approx>ty B' \<and> (pi \<bullet> x) = x'))"
| "_ \<approx>ty _ = False"
| a6: "(Const i) \<approx>tr (Const j) = (i = j)"
| a7: "(Var x) \<approx>tr (Var y) = (x = y)"
| a8: "(App M N) \<approx>tr (App M' N') = (M \<approx>tr M' \<and> N \<approx>tr N')"
| a9: "(Lam A x M) \<approx>tr (Lam A' x' M') = (A \<approx>ty A' \<and> (\<exists>pi. rfv_trm M - {atom x} = rfv_trm M' - {atom x'} \<and> (rfv_trm M - {atom x})\<sharp>* pi \<and> (pi \<bullet> M) \<approx>tr M' \<and> (pi \<bullet> x) = x'))"
| "_ \<approx>tr _ = False"
apply (pat_completeness)
apply simp_all
done
termination
by (size_change)
*)
lemma akind_aty_atrm_inj:
"(Type) \<approx>ki (Type) = True"
"(KPi A x K) \<approx>ki (KPi A' x' K') = (A \<approx>ty A' \<and> (\<exists>pi. (rfv_kind K - {atom x} = rfv_kind K' - {atom x'} \<and> (rfv_kind K - {atom x})\<sharp>* pi \<and> (pi \<bullet> K) \<approx>ki K' \<and> (pi \<bullet> x) = x')))"
"(TConst i) \<approx>ty (TConst j) = (i = j)"
"(TApp A M) \<approx>ty (TApp A' M') = (A \<approx>ty A' \<and> M \<approx>tr M')"
"(TPi A x B) \<approx>ty (TPi A' x' B') = ((A \<approx>ty A') \<and> (\<exists>pi. rfv_ty B - {atom x} = rfv_ty B' - {atom x'} \<and> (rfv_ty B - {atom x})\<sharp>* pi \<and> (pi \<bullet> B) \<approx>ty B' \<and> (pi \<bullet> x) = x'))"
"(Const i) \<approx>tr (Const j) = (i = j)"
"(Var x) \<approx>tr (Var y) = (x = y)"
"(App M N) \<approx>tr (App M' N') = (M \<approx>tr M' \<and> N \<approx>tr N')"
"(Lam A x M) \<approx>tr (Lam A' x' M') = (A \<approx>ty A' \<and> (\<exists>pi. rfv_trm M - {atom x} = rfv_trm M' - {atom x'} \<and> (rfv_trm M - {atom x})\<sharp>* pi \<and> (pi \<bullet> M) \<approx>tr M' \<and> (pi \<bullet> x) = x'))"
apply -
apply (simp add: akind_aty_atrm.intros)
apply rule apply (erule akind.cases) apply simp apply blast
apply (simp only: akind_aty_atrm.intros)
apply rule apply (erule aty.cases) apply simp apply simp apply simp
apply (simp only: akind_aty_atrm.intros)
apply rule apply (erule aty.cases) apply simp apply simp apply simp
apply (simp only: akind_aty_atrm.intros)
apply rule apply (erule aty.cases) apply simp apply simp apply blast
apply (simp only: akind_aty_atrm.intros)
apply rule apply (erule atrm.cases) apply simp apply simp apply simp apply blast
apply (simp only: akind_aty_atrm.intros)
apply rule apply (erule atrm.cases) apply simp apply simp apply simp apply blast
apply (simp only: akind_aty_atrm.intros)
apply rule apply (erule atrm.cases) apply simp apply simp apply simp apply blast
apply (simp only: akind_aty_atrm.intros)
apply rule apply (erule atrm.cases) apply simp apply simp apply simp apply blast
apply (simp only: akind_aty_atrm.intros)
done
lemma rfv_eqvt[eqvt]:
"((pi\<bullet>rfv_kind t1) = rfv_kind (pi\<bullet>t1))"
"((pi\<bullet>rfv_ty t2) = rfv_ty (pi\<bullet>t2))"
"((pi\<bullet>rfv_trm t3) = rfv_trm (pi\<bullet>t3))"
apply(induct t1 and t2 and t3 rule: kind_ty_trm.inducts)
apply(simp_all add: union_eqvt Diff_eqvt)
apply(simp_all add: permute_set_eq atom_eqvt)
done
lemma alpha_eqvt:
"t1 \<approx>ki s1 \<Longrightarrow> (pi \<bullet> t1) \<approx>ki (pi \<bullet> s1)"
"t2 \<approx>ty s2 \<Longrightarrow> (pi \<bullet> t2) \<approx>ty (pi \<bullet> s2)"
"t3 \<approx>tr s3 \<Longrightarrow> (pi \<bullet> t3) \<approx>tr (pi \<bullet> s3)"
apply(induct rule: akind_aty_atrm.inducts)
apply (simp_all add: akind_aty_atrm.intros)
apply(rule a2)
apply simp
apply(erule conjE)
apply(erule exE)
apply(erule conjE)
apply(rule_tac x="pi \<bullet> pia" in exI)
apply(rule conjI)
apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1])
apply(simp add: eqvts atom_eqvt)
apply(rule conjI)
apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1])
apply(simp add: eqvts atom_eqvt)
apply(simp add: permute_eqvt[symmetric])
apply(rule a5)
apply simp
apply(erule conjE)
apply(erule exE)
apply(erule conjE)
apply(rule_tac x="pi \<bullet> pia" in exI)
apply(rule conjI)
apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1])
apply(simp add: eqvts atom_eqvt)
apply(rule conjI)
apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1])
apply(simp add: eqvts atom_eqvt)
apply(simp add: permute_eqvt[symmetric])
apply(rule a9)
apply simp
apply(erule conjE)
apply(erule exE)
apply(erule conjE)
apply(rule_tac x="pi \<bullet> pia" in exI)
apply(rule conjI)
apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1])
apply(simp add: eqvts atom_eqvt)
apply(rule conjI)
apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1])
apply(simp add: eqvts atom_eqvt)
apply(simp add: permute_eqvt[symmetric])
done
lemma al_refl:
fixes K::"kind"
and A::"ty"
and M::"trm"
shows "K \<approx>ki K"
and "A \<approx>ty A"
and "M \<approx>tr M"
apply(induct K and A and M rule: kind_ty_trm.inducts)
apply(auto intro: akind_aty_atrm.intros)
apply (rule a2)
apply auto
apply(rule_tac x="0" in exI)
apply(simp_all add: fresh_star_def fresh_zero_perm)
apply (rule a5)
apply auto
apply(rule_tac x="0" in exI)
apply(simp_all add: fresh_star_def fresh_zero_perm)
apply (rule a9)
apply auto
apply(rule_tac x="0" in exI)
apply(simp_all add: fresh_star_def fresh_zero_perm)
done
lemma alpha_equivps:
shows "equivp akind"
and "equivp aty"
and "equivp atrm"
sorry
quotient_type KIND = kind / akind
by (rule alpha_equivps)
quotient_type
TY = ty / aty and
TRM = trm / atrm
by (auto intro: alpha_equivps)
quotient_definition
"TYP :: KIND"
as
"Type"
quotient_definition
"KPI :: TY \<Rightarrow> name \<Rightarrow> KIND \<Rightarrow> KIND"
as
"KPi"
quotient_definition
"TCONST :: ident \<Rightarrow> TY"
as
"TConst"
quotient_definition
"TAPP :: TY \<Rightarrow> TRM \<Rightarrow> TY"
as
"TApp"
quotient_definition
"TPI :: TY \<Rightarrow> name \<Rightarrow> TY \<Rightarrow> TY"
as
"TPi"
(* FIXME: does not work with CONST *)
quotient_definition
"CONS :: ident \<Rightarrow> TRM"
as
"Const"
quotient_definition
"VAR :: name \<Rightarrow> TRM"
as
"Var"
quotient_definition
"APP :: TRM \<Rightarrow> TRM \<Rightarrow> TRM"
as
"App"
quotient_definition
"LAM :: TY \<Rightarrow> name \<Rightarrow> TRM \<Rightarrow> TRM"
as
"Lam"
(* FIXME: print out a warning if the type contains a liftet type, like kind \<Rightarrow> name set *)
quotient_definition
"fv_kind :: KIND \<Rightarrow> atom set"
as
"rfv_kind"
quotient_definition
"fv_ty :: TY \<Rightarrow> atom set"
as
"rfv_ty"
quotient_definition
"fv_trm :: TRM \<Rightarrow> atom set"
as
"rfv_trm"
lemma alpha_rfv:
shows "(t \<approx>ki s \<longrightarrow> rfv_kind t = rfv_kind s) \<and>
(t1 \<approx>ty s1 \<longrightarrow> rfv_ty t1 = rfv_ty s1) \<and>
(t2 \<approx>tr s2 \<longrightarrow> rfv_trm t2 = rfv_trm s2)"
apply(rule akind_aty_atrm.induct)
apply(simp_all)
done
lemma perm_rsp[quot_respect]:
"(op = ===> akind ===> akind) permute permute"
"(op = ===> aty ===> aty) permute permute"
"(op = ===> atrm ===> atrm) permute permute"
by (simp_all add:alpha_eqvt)
lemma tconst_rsp[quot_respect]:
"(op = ===> aty) TConst TConst"
apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9) done
lemma tapp_rsp[quot_respect]:
"(aty ===> atrm ===> aty) TApp TApp"
apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9) done
lemma var_rsp[quot_respect]:
"(op = ===> atrm) Var Var"
apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9) done
lemma app_rsp[quot_respect]:
"(atrm ===> atrm ===> atrm) App App"
apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9) done
lemma const_rsp[quot_respect]:
"(op = ===> atrm) Const Const"
apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9) done
lemma kpi_rsp[quot_respect]:
"(aty ===> op = ===> akind ===> akind) KPi KPi"
apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9)
apply (rule a2) apply simp
apply (rule_tac x="0" in exI)
apply (simp add: fresh_star_def fresh_zero_perm alpha_rfv)
done
lemma tpi_rsp[quot_respect]:
"(aty ===> op = ===> aty ===> aty) TPi TPi"
apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9)
apply (rule a5) apply simp
apply (rule_tac x="0" in exI)
apply (simp add: fresh_star_def fresh_zero_perm alpha_rfv)
done
lemma lam_rsp[quot_respect]:
"(aty ===> op = ===> atrm ===> atrm) Lam Lam"
apply (auto intro: a1 a2 a3 a4 a5 a6 a7 a8 a9)
apply (rule a9) apply simp
apply (rule_tac x="0" in exI)
apply (simp add: fresh_star_def fresh_zero_perm alpha_rfv)
done
lemma rfv_ty_rsp[quot_respect]:
"(aty ===> op =) rfv_ty rfv_ty"
by (simp add: alpha_rfv)
lemma rfv_kind_rsp[quot_respect]:
"(akind ===> op =) rfv_kind rfv_kind"
by (simp add: alpha_rfv)
lemma rfv_trm_rsp[quot_respect]:
"(atrm ===> op =) rfv_trm rfv_trm"
by (simp add: alpha_rfv)
lemma KIND_TY_TRM_induct: "\<lbrakk>P10 TYP; \<And>ty name kind. \<lbrakk>P20 ty; P10 kind\<rbrakk> \<Longrightarrow> P10 (KPI ty name kind); \<And>ident. P20 (TCONST ident);
\<And>ty trm. \<lbrakk>P20 ty; P30 trm\<rbrakk> \<Longrightarrow> P20 (TAPP ty trm);
\<And>ty1 name ty2. \<lbrakk>P20 ty1; P20 ty2\<rbrakk> \<Longrightarrow> P20 (TPI ty1 name ty2); \<And>ident. P30 (CONS ident);
\<And>name. P30 (VAR name); \<And>trm1 trm2. \<lbrakk>P30 trm1; P30 trm2\<rbrakk> \<Longrightarrow> P30 (APP trm1 trm2);
\<And>ty name trm. \<lbrakk>P20 ty; P30 trm\<rbrakk> \<Longrightarrow> P30 (LAM ty name trm)\<rbrakk>
\<Longrightarrow> P10 kind \<and> P20 ty \<and> P30 trm"
by (lifting kind_ty_trm.induct)
thm kind_ty_trm.inducts
lemma KIND_TY_TRM_inducts:
"\<lbrakk>P10 TYP; \<And>ty name kind. \<lbrakk>P20 ty; P10 kind\<rbrakk> \<Longrightarrow> P10 (KPI ty name kind); \<And>ident. P20 (TCONST ident);
\<And>ty trm. \<lbrakk>P20 ty; P30 trm\<rbrakk> \<Longrightarrow> P20 (TAPP ty trm);
\<And>ty1 name ty2. \<lbrakk>P20 ty1; P20 ty2\<rbrakk> \<Longrightarrow> P20 (TPI ty1 name ty2); \<And>ident. P30 (CONS ident);
\<And>name. P30 (VAR name); \<And>trm1 trm2. \<lbrakk>P30 trm1; P30 trm2\<rbrakk> \<Longrightarrow> P30 (APP trm1 trm2);
\<And>ty name trm. \<lbrakk>P20 ty; P30 trm\<rbrakk> \<Longrightarrow> P30 (LAM ty name trm)\<rbrakk>
\<Longrightarrow> P10 kind"
"\<lbrakk>P10 TYP; \<And>ty name kind. \<lbrakk>P20 ty; P10 kind\<rbrakk> \<Longrightarrow> P10 (KPI ty name kind); \<And>ident. P20 (TCONST ident);
\<And>ty trm. \<lbrakk>P20 ty; P30 trm\<rbrakk> \<Longrightarrow> P20 (TAPP ty trm);
\<And>ty1 name ty2. \<lbrakk>P20 ty1; P20 ty2\<rbrakk> \<Longrightarrow> P20 (TPI ty1 name ty2); \<And>ident. P30 (CONS ident);
\<And>name. P30 (VAR name); \<And>trm1 trm2. \<lbrakk>P30 trm1; P30 trm2\<rbrakk> \<Longrightarrow> P30 (APP trm1 trm2);
\<And>ty name trm. \<lbrakk>P20 ty; P30 trm\<rbrakk> \<Longrightarrow> P30 (LAM ty name trm)\<rbrakk>
\<Longrightarrow> P20 ty"
"\<lbrakk>P10 TYP; \<And>ty name kind. \<lbrakk>P20 ty; P10 kind\<rbrakk> \<Longrightarrow> P10 (KPI ty name kind); \<And>ident. P20 (TCONST ident);
\<And>ty trm. \<lbrakk>P20 ty; P30 trm\<rbrakk> \<Longrightarrow> P20 (TAPP ty trm);
\<And>ty1 name ty2. \<lbrakk>P20 ty1; P20 ty2\<rbrakk> \<Longrightarrow> P20 (TPI ty1 name ty2); \<And>ident. P30 (CONS ident);
\<And>name. P30 (VAR name); \<And>trm1 trm2. \<lbrakk>P30 trm1; P30 trm2\<rbrakk> \<Longrightarrow> P30 (APP trm1 trm2);
\<And>ty name trm. \<lbrakk>P20 ty; P30 trm\<rbrakk> \<Longrightarrow> P30 (LAM ty name trm)\<rbrakk>
\<Longrightarrow> P30 trm"
by (lifting kind_ty_trm.inducts)
instantiation KIND and TY and TRM :: pt
begin
quotient_definition
"permute_KIND :: perm \<Rightarrow> KIND \<Rightarrow> KIND"
as
"permute :: perm \<Rightarrow> kind \<Rightarrow> kind"
quotient_definition
"permute_TY :: perm \<Rightarrow> TY \<Rightarrow> TY"
as
"permute :: perm \<Rightarrow> ty \<Rightarrow> ty"
quotient_definition
"permute_TRM :: perm \<Rightarrow> TRM \<Rightarrow> TRM"
as
"permute :: perm \<Rightarrow> trm \<Rightarrow> trm"
lemma permute_ktt[simp]:
shows "pi \<bullet> TYP = TYP"
and "pi \<bullet> (KPI t n k) = KPI (pi \<bullet> t) (pi \<bullet> n) (pi \<bullet> k)"
and "pi \<bullet> (TCONST i) = TCONST (pi \<bullet> i)"
and "pi \<bullet> (TAPP A M) = TAPP (pi \<bullet> A) (pi \<bullet> M)"
and "pi \<bullet> (TPI A x B) = TPI (pi \<bullet> A) (pi \<bullet> x) (pi \<bullet> B)"
and "pi \<bullet> (CONS i) = CONS (pi \<bullet> i)"
and "pi \<bullet> (VAR x) = VAR (pi \<bullet> x)"
and "pi \<bullet> (APP M N) = APP (pi \<bullet> M) (pi \<bullet> N)"
and "pi \<bullet> (LAM A x M) = LAM (pi \<bullet> A) (pi \<bullet> x) (pi \<bullet> M)"
apply (lifting permute_kind_permute_ty_permute_trm.simps)
done
lemma perm_zero_ok: "0 \<bullet> (x :: KIND) = x \<and> 0 \<bullet> (y :: TY) = y \<and> 0 \<bullet> (z :: TRM) = z"
apply (induct rule: KIND_TY_TRM_induct)
apply simp_all
done
lemma perm_add_ok:
"((p + q) \<bullet> (x1 :: KIND) = (p \<bullet> q \<bullet> x1))"
"((p + q) \<bullet> (x2 :: TY) = p \<bullet> q \<bullet> x2)"
"((p + q) \<bullet> (x3 :: TRM) = p \<bullet> q \<bullet> x3)"
apply(induct x1 and x2 and x3 rule: KIND_TY_TRM_inducts)
apply (simp_all)
done
instance
apply default
apply (simp_all add: perm_zero_ok perm_add_ok)
done
end
lemma "\<lbrakk>P10 TYP TYP;
\<And>A A' K x K' x'.
\<lbrakk>(A :: TY) = A'; P20 A A';
\<exists>pi. fv_kind K - {atom x} = fv_kind K' - {atom x'} \<and>
(fv_kind K - {atom x}) \<sharp>* pi \<and> ((pi \<bullet> K) = K' \<and> P10 (pi \<bullet> K) K') \<and> pi \<bullet> x = x'\<rbrakk>
\<Longrightarrow> P10 (KPI A x K) (KPI A' x' K');
\<And>i j. i = j \<Longrightarrow> P20 (TCONST i) (TCONST j);
\<And>A A' M M'. \<lbrakk>A = A'; P20 A A'; M = M'; P30 M M'\<rbrakk> \<Longrightarrow> P20 (TAPP A M) (TAPP A' M');
\<And>A A' B x B' x'.
\<lbrakk>A = A'; P20 A A';
\<exists>pi. fv_ty B - {atom x} = fv_ty B' - {atom x'} \<and>
(fv_ty B - {atom x}) \<sharp>* pi \<and> ((pi \<bullet> B) = B' \<and> P20 (pi \<bullet> B) B') \<and> pi \<bullet> x = x'\<rbrakk>
\<Longrightarrow> P20 (TPI A x B) (TPI A' x' B');
\<And>i j. i = j \<Longrightarrow> P30 (CONS i) (CONS j); \<And>x y. x = y \<Longrightarrow> P30 (VAR x) (VAR y);
\<And>M M' N N'. \<lbrakk>M = M'; P30 M M'; N = N'; P30 N N'\<rbrakk> \<Longrightarrow> P30 (APP M N) (APP M' N');
\<And>A A' M x M' x'.
\<lbrakk>A = A'; P20 A A';
\<exists>pi. fv_trm M - {atom x} = fv_trm M' - {atom x'} \<and>
(fv_trm M - {atom x}) \<sharp>* pi \<and> ((pi \<bullet> M) = M' \<and> P30 (pi \<bullet> M) M') \<and> pi \<bullet> x = x'\<rbrakk>
\<Longrightarrow> P30 (LAM A x M) (LAM A' x' M')\<rbrakk>
\<Longrightarrow> (x10 = x20 \<longrightarrow> P10 x10 x20) \<and>
(x30 = x40 \<longrightarrow> P20 x30 x40) \<and> (x50 = x60 \<longrightarrow> P30 x50 x60)"
by (lifting akind_aty_atrm.induct)
lemma AKIND_ATY_ATRM_inducts:
"\<lbrakk>x10 = x20; P10 TYP TYP;
\<And>A A' K x K' x'.
\<lbrakk>A = A'; P20 A A';
\<exists>pi. fv_kind K - {atom x} = fv_kind K' - {atom x'} \<and>
(fv_kind K - {atom x}) \<sharp>* pi \<and> ((pi \<bullet> K) = K' \<and> P10 (pi \<bullet> K) K') \<and> pi \<bullet> x = x'\<rbrakk>
\<Longrightarrow> P10 (KPI A x K) (KPI A' x' K');
\<And>i j. i = j \<Longrightarrow> P20 (TCONST i) (TCONST j);
\<And>A A' M M'. \<lbrakk>A = A'; P20 A A'; M = M'; P30 M M'\<rbrakk> \<Longrightarrow> P20 (TAPP A M) (TAPP A' M');
\<And>A A' B x B' x'.
\<lbrakk>A = A'; P20 A A';
\<exists>pi. fv_ty B - {atom x} = fv_ty B' - {atom x'} \<and>
(fv_ty B - {atom x}) \<sharp>* pi \<and> ((pi \<bullet> B) = B' \<and> P20 (pi \<bullet> B) B') \<and> pi \<bullet> x = x'\<rbrakk>
\<Longrightarrow> P20 (TPI A x B) (TPI A' x' B');
\<And>i j. i = j \<Longrightarrow> P30 (CONS i) (CONS j); \<And>x y. x = y \<Longrightarrow> P30 (VAR x) (VAR y);
\<And>M M' N N'. \<lbrakk>M = M'; P30 M M'; N = N'; P30 N N'\<rbrakk> \<Longrightarrow> P30 (APP M N) (APP M' N');
\<And>A A' M x M' x'.
\<lbrakk>A = A'; P20 A A';
\<exists>pi. fv_trm M - {atom x} = fv_trm M' - {atom x'} \<and>
(fv_trm M - {atom x}) \<sharp>* pi \<and> ((pi \<bullet> M) = M' \<and> P30 (pi \<bullet> M) M') \<and> pi \<bullet> x = x'\<rbrakk>
\<Longrightarrow> P30 (LAM A x M) (LAM A' x' M')\<rbrakk>
\<Longrightarrow> P10 x10 x20"
"\<lbrakk>x30 = x40; P10 TYP TYP;
\<And>A A' K x K' x'.
\<lbrakk>A = A'; P20 A A';
\<exists>pi. fv_kind K - {atom x} = fv_kind K' - {atom x'} \<and>
(fv_kind K - {atom x}) \<sharp>* pi \<and> ((pi \<bullet> K) = K' \<and> P10 (pi \<bullet> K) K') \<and> pi \<bullet> x = x'\<rbrakk>
\<Longrightarrow> P10 (KPI A x K) (KPI A' x' K');
\<And>i j. i = j \<Longrightarrow> P20 (TCONST i) (TCONST j);
\<And>A A' M M'. \<lbrakk>A = A'; P20 A A'; M = M'; P30 M M'\<rbrakk> \<Longrightarrow> P20 (TAPP A M) (TAPP A' M');
\<And>A A' B x B' x'.
\<lbrakk>A = A'; P20 A A';
\<exists>pi. fv_ty B - {atom x} = fv_ty B' - {atom x'} \<and>
(fv_ty B - {atom x}) \<sharp>* pi \<and> ((pi \<bullet> B) = B' \<and> P20 (pi \<bullet> B) B') \<and> pi \<bullet> x = x'\<rbrakk>
\<Longrightarrow> P20 (TPI A x B) (TPI A' x' B');
\<And>i j. i = j \<Longrightarrow> P30 (CONS i) (CONS j); \<And>x y. x = y \<Longrightarrow> P30 (VAR x) (VAR y);
\<And>M M' N N'. \<lbrakk>M = M'; P30 M M'; N = N'; P30 N N'\<rbrakk> \<Longrightarrow> P30 (APP M N) (APP M' N');
\<And>A A' M x M' x'.
\<lbrakk>A = A'; P20 A A';
\<exists>pi. fv_trm M - {atom x} = fv_trm M' - {atom x'} \<and>
(fv_trm M - {atom x}) \<sharp>* pi \<and> ((pi \<bullet> M) = M' \<and> P30 (pi \<bullet> M) M') \<and> pi \<bullet> x = x'\<rbrakk>
\<Longrightarrow> P30 (LAM A x M) (LAM A' x' M')\<rbrakk>
\<Longrightarrow> P20 x30 x40"
"\<lbrakk>x50 = x60; P10 TYP TYP;
\<And>A A' K x K' x'.
\<lbrakk>A = A'; P20 A A';
\<exists>pi. fv_kind K - {atom x} = fv_kind K' - {atom x'} \<and>
(fv_kind K - {atom x}) \<sharp>* pi \<and> ((pi \<bullet> K) = K' \<and> P10 (pi \<bullet> K) K') \<and> pi \<bullet> x = x'\<rbrakk>
\<Longrightarrow> P10 (KPI A x K) (KPI A' x' K');
\<And>i j. i = j \<Longrightarrow> P20 (TCONST i) (TCONST j);
\<And>A A' M M'. \<lbrakk>A = A'; P20 A A'; M = M'; P30 M M'\<rbrakk> \<Longrightarrow> P20 (TAPP A M) (TAPP A' M');
\<And>A A' B x B' x'.
\<lbrakk>A = A'; P20 A A';
\<exists>pi. fv_ty B - {atom x} = fv_ty B' - {atom x'} \<and>
(fv_ty B - {atom x}) \<sharp>* pi \<and> ((pi \<bullet> B) = B' \<and> P20 (pi \<bullet> B) B') \<and> pi \<bullet> x = x'\<rbrakk>
\<Longrightarrow> P20 (TPI A x B) (TPI A' x' B');
\<And>i j. i = j \<Longrightarrow> P30 (CONS i) (CONS j); \<And>x y. x = y \<Longrightarrow> P30 (VAR x) (VAR y);
\<And>M M' N N'. \<lbrakk>M = M'; P30 M M'; N = N'; P30 N N'\<rbrakk> \<Longrightarrow> P30 (APP M N) (APP M' N');
\<And>A A' M x M' x'.
\<lbrakk>A = A'; P20 A A';
\<exists>pi. fv_trm M - {atom x} = fv_trm M' - {atom x'} \<and>
(fv_trm M - {atom x}) \<sharp>* pi \<and> ((pi \<bullet> M) = M' \<and> P30 (pi \<bullet> M) M') \<and> pi \<bullet> x = x'\<rbrakk>
\<Longrightarrow> P30 (LAM A x M) (LAM A' x' M')\<rbrakk>
\<Longrightarrow> P30 x50 x60"
by (lifting akind_aty_atrm.inducts)
lemma KIND_TY_TRM_INJECT:
"(TYP) = (TYP) = True"
"(KPI A x K) = (KPI A' x' K') = (A = A' \<and> (\<exists>pi. (fv_kind K - {atom x} = fv_kind K' - {atom x'} \<and> (fv_kind K - {atom x})\<sharp>* pi \<and> (pi \<bullet> K) = K' \<and> (pi \<bullet> x) = x')))"
"(TCONST i) = (TCONST j) = (i = j)"
"(TAPP A M) = (TAPP A' M') = (A = A' \<and> M = M')"
"(TPI A x B) = (TPI A' x' B') = ((A = A') \<and> (\<exists>pi. fv_ty B - {atom x} = fv_ty B' - {atom x'} \<and> (fv_ty B - {atom x})\<sharp>* pi \<and> (pi \<bullet> B) = B' \<and> (pi \<bullet> x) = x'))"
"(CONS i) = (CONS j) = (i = j)"
"(VAR x) = (VAR y) = (x = y)"
"(APP M N) = (APP M' N') = (M = M' \<and> N = N')"
"(LAM A x M) = (LAM A' x' M') = (A = A' \<and> (\<exists>pi. fv_trm M - {atom x} = fv_trm M' - {atom x'} \<and> (fv_trm M - {atom x})\<sharp>* pi \<and> (pi \<bullet> M) = M' \<and> (pi \<bullet> x) = x'))"
by (lifting akind_aty_atrm_inj)
lemma fv_kind_ty_trm:
"fv_kind TYP = {}"
"fv_kind (KPI A x K) = fv_ty A \<union> (fv_kind K - {atom x})"
"fv_ty (TCONST i) = {atom i}"
"fv_ty (TAPP A M) = fv_ty A \<union> fv_trm M"
"fv_ty (TPI A x B) = fv_ty A \<union> (fv_ty B - {atom x})"
"fv_trm (CONS i) = {atom i}"
"fv_trm (VAR x) = {atom x}"
"fv_trm (APP M N) = fv_trm M \<union> fv_trm N"
"fv_trm (LAM A x M) = fv_ty A \<union> (fv_trm M - {atom x})"
by(lifting rfv_kind_rfv_ty_rfv_trm.simps)
lemma fv_eqvt:
"(p \<bullet> fv_kind t1) = fv_kind (p \<bullet> t1)"
"(p \<bullet> fv_ty t2) = fv_ty (p \<bullet> t2)"
"(p \<bullet> fv_trm t3) = fv_trm (p \<bullet> t3)"
by(lifting rfv_eqvt)
lemma supp_fv:
"fv_kind t1 = supp t1"
"fv_ty t2 = supp t2"
"fv_trm t3 = supp t3"
apply(induct t1 and t2 and t3 rule: KIND_TY_TRM_inducts)
apply (simp_all add: fv_kind_ty_trm)
apply (simp_all add: supp_def)
sorry
lemma
"(supp ((a \<rightleftharpoons> b) \<bullet> (K::KIND)) - {atom ((a \<rightleftharpoons> b) \<bullet> (x::name))} = supp K - {atom x} \<longrightarrow>
(a \<rightleftharpoons> b) \<bullet> A = (A::TY) \<longrightarrow> (\<forall>pi\<Colon>perm. pi \<bullet> (a \<rightleftharpoons> b) \<bullet> K = K \<longrightarrow> (supp K - {atom x}) \<sharp>* pi \<longrightarrow> pi \<bullet> (a \<rightleftharpoons> b) \<bullet> x \<noteq> x)) =
(supp ((a \<rightleftharpoons> b) \<bullet> K) - {atom ((a \<rightleftharpoons> b) \<bullet> x)} = supp K - {atom x} \<and>
(\<exists>pi\<Colon>perm. (supp ((a \<rightleftharpoons> b) \<bullet> K) - {atom ((a \<rightleftharpoons> b) \<bullet> x)}) \<sharp>* pi \<and> pi \<bullet> (a \<rightleftharpoons> b) \<bullet> K = K) \<longrightarrow> (a \<rightleftharpoons> b) \<bullet> A \<noteq> A)"
apply (case_tac "(a \<rightleftharpoons> b) \<bullet> A = A")
apply (case_tac "supp ((a \<rightleftharpoons> b) \<bullet> K) - {atom ((a \<rightleftharpoons> b) \<bullet> x)} = supp K - {atom x}")
apply simp_all
sorry
lemma supp_kpi_pre: "supp (KPI A x K) = (supp (Abst {atom x} K)) \<union> supp A"
apply (subst supp_Pair[symmetric])
unfolding supp_def
apply (simp add: permute_set_eq)
apply(subst abs_eq)
apply(subst KIND_TY_TRM_INJECT)
apply(simp only: supp_fv)
apply simp
apply (unfold supp_def)
sorry
lemma KIND_TY_TRM_fs:
"finite (supp (x\<Colon>KIND))"
"finite (supp (y\<Colon>TY))"
"finite (supp (z\<Colon>TRM))"
apply(induct x and y and z rule: KIND_TY_TRM_inducts)
sorry
instance KIND and TY and TRM :: fs
apply(default)
apply(simp_all only: KIND_TY_TRM_fs)
done
lemma supp_kpi: "supp (KPI A x K) = supp A \<union> (supp K - {atom x})"
apply(subst supp_kpi_pre)
apply(subst supp_Abst)
apply (simp only: Set.Un_commute)
done
lemma supp_kind_ty_trm:
"supp TYP = {}"
"supp (KPI A x K) = supp A \<union> (supp K - {atom x})"
"supp (TCONST i) = {atom i}"
"supp (TAPP A M) = supp A \<union> supp M"
"supp (TPI A x B) = supp A \<union> (supp B - {atom x})"
"supp (CONS i) = {atom i}"
"supp (VAR x) = {atom x}"
"supp (APP M N) = supp M \<union> supp N"
"supp (LAM A x M) = supp A \<union> (supp M - {atom x})"
apply -
apply (simp add: supp_def)
apply (simp add: supp_kpi)
apply (simp add: supp_def KIND_TY_TRM_INJECT) apply (fold supp_def) apply (rule supp_at_base)
apply (simp add: supp_def permute_ktt KIND_TY_TRM_INJECT Collect_imp_eq Collect_neg_eq)
defer
apply (simp add: supp_def KIND_TY_TRM_INJECT) apply (fold supp_def) apply (rule supp_at_base)
apply (simp add: supp_def KIND_TY_TRM_INJECT) apply (fold supp_def) apply (rule supp_at_base)
apply (simp add: supp_def permute_ktt KIND_TY_TRM_INJECT Collect_imp_eq Collect_neg_eq)
sorry
end