Nominal/Abs.thy
author Christian Urban <urbanc@in.tum.de>
Wed, 06 Oct 2010 08:09:40 +0100
changeset 2512 b5cb3183409e
parent 2491 d0961e6d6881
child 2559 add799cf0817
permissions -rw-r--r--
down to 22 pages

theory Abs
imports "../Nominal-General/Nominal2_Base" 
        "../Nominal-General/Nominal2_Eqvt" 
        "Quotient" 
        "Quotient_List"
        "Quotient_Product" 
begin


section {* Abstractions *}

fun
  alpha_set 
where
  alpha_set[simp del]:
  "alpha_set (bs, x) R f pi (cs, y) \<longleftrightarrow> 
     f x - bs = f y - cs \<and> 
     (f x - bs) \<sharp>* pi \<and> 
     R (pi \<bullet> x) y \<and>
     pi \<bullet> bs = cs"

fun
  alpha_res
where
  alpha_res[simp del]:
  "alpha_res (bs, x) R f pi (cs, y) \<longleftrightarrow> 
     f x - bs = f y - cs \<and> 
     (f x - bs) \<sharp>* pi \<and> 
     R (pi \<bullet> x) y"

fun
  alpha_lst
where
  alpha_lst[simp del]:
  "alpha_lst (bs, x) R f pi (cs, y) \<longleftrightarrow> 
     f x - set bs = f y - set cs \<and> 
     (f x - set bs) \<sharp>* pi \<and> 
     R (pi \<bullet> x) y \<and>
     pi \<bullet> bs = cs"

lemmas alphas = alpha_set.simps alpha_res.simps alpha_lst.simps

notation
  alpha_set ("_ \<approx>set _ _ _ _" [100, 100, 100, 100, 100] 100) and
  alpha_res ("_ \<approx>res _ _ _ _" [100, 100, 100, 100, 100] 100) and
  alpha_lst ("_ \<approx>lst _ _ _ _" [100, 100, 100, 100, 100] 100) 

section {* Mono *}

lemma [mono]: 
  shows "R1 \<le> R2 \<Longrightarrow> alpha_set bs R1 \<le> alpha_set bs R2"
  and   "R1 \<le> R2 \<Longrightarrow> alpha_res bs R1 \<le> alpha_res bs R2"
  and   "R1 \<le> R2 \<Longrightarrow> alpha_lst cs R1 \<le> alpha_lst cs R2"
  by (case_tac [!] bs, case_tac [!] cs) 
     (auto simp add: le_fun_def le_bool_def alphas)

section {* Equivariance *}

lemma alpha_eqvt[eqvt]:
  shows "(bs, x) \<approx>set R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>set (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
  and   "(bs, x) \<approx>res R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>res (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
  and   "(ds, x) \<approx>lst R f q (es, y) \<Longrightarrow> (p \<bullet> ds, p \<bullet> x) \<approx>lst (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> es, p \<bullet> y)" 
  unfolding alphas
  unfolding permute_eqvt[symmetric]
  unfolding set_eqvt[symmetric]
  unfolding permute_fun_app_eq[symmetric]
  unfolding Diff_eqvt[symmetric]
  by (auto simp add: permute_bool_def fresh_star_permute_iff)


section {* Equivalence *}

lemma alpha_refl:
  assumes a: "R x x"
  shows "(bs, x) \<approx>set R f 0 (bs, x)"
  and   "(bs, x) \<approx>res R f 0 (bs, x)"
  and   "(cs, x) \<approx>lst R f 0 (cs, x)"
  using a 
  unfolding alphas
  unfolding fresh_star_def
  by (simp_all add: fresh_zero_perm)

lemma alpha_sym:
  assumes a: "R (p \<bullet> x) y \<Longrightarrow> R (- p \<bullet> y) x"
  shows "(bs, x) \<approx>set R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>set R f (- p) (bs, x)"
  and   "(bs, x) \<approx>res R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>res R f (- p) (bs, x)"
  and   "(ds, x) \<approx>lst R f p (es, y) \<Longrightarrow> (es, y) \<approx>lst R f (- p) (ds, x)"
  unfolding alphas fresh_star_def
  using a
  by (auto simp add:  fresh_minus_perm)

lemma alpha_trans:
  assumes a: "\<lbrakk>R (p \<bullet> x) y; R (q \<bullet> y) z\<rbrakk> \<Longrightarrow> R ((q + p) \<bullet> x) z"
  shows "\<lbrakk>(bs, x) \<approx>set R f p (cs, y); (cs, y) \<approx>set R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>set R f (q + p) (ds, z)"
  and   "\<lbrakk>(bs, x) \<approx>res R f p (cs, y); (cs, y) \<approx>res R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>res R f (q + p) (ds, z)"
  and   "\<lbrakk>(es, x) \<approx>lst R f p (gs, y); (gs, y) \<approx>lst R f q (hs, z)\<rbrakk> \<Longrightarrow> (es, x) \<approx>lst R f (q + p) (hs, z)"
  using a
  unfolding alphas fresh_star_def
  by (simp_all add: fresh_plus_perm)

lemma alpha_sym_eqvt:
  assumes a: "R (p \<bullet> x) y \<Longrightarrow> R y (p \<bullet> x)" 
  and     b: "p \<bullet> R = R"
  shows "(bs, x) \<approx>set R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>set R f (- p) (bs, x)" 
  and   "(bs, x) \<approx>res R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>res R f (- p) (bs, x)" 
  and   "(ds, x) \<approx>lst R f p (es, y) \<Longrightarrow> (es, y) \<approx>lst R f (- p) (ds, x)"
apply(auto intro!: alpha_sym)
apply(drule_tac [!] a)
apply(rule_tac [!] p="p" in permute_boolE)
apply(perm_simp add: permute_minus_cancel b)
apply(assumption)
apply(perm_simp add: permute_minus_cancel b)
apply(assumption)
apply(perm_simp add: permute_minus_cancel b)
apply(assumption)
done

lemma alpha_set_trans_eqvt:
  assumes b: "(cs, y) \<approx>set R f q (ds, z)"
  and     a: "(bs, x) \<approx>set R f p (cs, y)" 
  and     d: "q \<bullet> R = R"
  and     c: "\<lbrakk>R (p \<bullet> x) y; R y (- q \<bullet> z)\<rbrakk> \<Longrightarrow> R (p \<bullet> x) (- q \<bullet> z)"
  shows "(bs, x) \<approx>set R f (q + p) (ds, z)"
apply(rule alpha_trans)
defer
apply(rule a)
apply(rule b)
apply(drule c)
apply(rule_tac p="q" in permute_boolE)
apply(perm_simp add: permute_minus_cancel d)
apply(assumption)
apply(rotate_tac -1)
apply(drule_tac p="q" in permute_boolI)
apply(perm_simp add: permute_minus_cancel d)
apply(simp add: permute_eqvt[symmetric])
done

lemma alpha_res_trans_eqvt:
  assumes  b: "(cs, y) \<approx>res R f q (ds, z)"
  and     a: "(bs, x) \<approx>res R f p (cs, y)" 
  and     d: "q \<bullet> R = R"
  and     c: "\<lbrakk>R (p \<bullet> x) y; R y (- q \<bullet> z)\<rbrakk> \<Longrightarrow> R (p \<bullet> x) (- q \<bullet> z)"
  shows "(bs, x) \<approx>res R f (q + p) (ds, z)"
apply(rule alpha_trans)
defer
apply(rule a)
apply(rule b)
apply(drule c)
apply(rule_tac p="q" in permute_boolE)
apply(perm_simp add: permute_minus_cancel d)
apply(assumption)
apply(rotate_tac -1)
apply(drule_tac p="q" in permute_boolI)
apply(perm_simp add: permute_minus_cancel d)
apply(simp add: permute_eqvt[symmetric])
done

lemma alpha_lst_trans_eqvt:
  assumes b: "(cs, y) \<approx>lst R f q (ds, z)"
  and     a: "(bs, x) \<approx>lst R f p (cs, y)" 
  and     d: "q \<bullet> R = R"
  and     c: "\<lbrakk>R (p \<bullet> x) y; R y (- q \<bullet> z)\<rbrakk> \<Longrightarrow> R (p \<bullet> x) (- q \<bullet> z)"
  shows "(bs, x) \<approx>lst R f (q + p) (ds, z)"
apply(rule alpha_trans)
defer
apply(rule a)
apply(rule b)
apply(drule c)
apply(rule_tac p="q" in permute_boolE)
apply(perm_simp add: permute_minus_cancel d)
apply(assumption)
apply(rotate_tac -1)
apply(drule_tac p="q" in permute_boolI)
apply(perm_simp add: permute_minus_cancel d)
apply(simp add: permute_eqvt[symmetric])
done

lemmas alpha_trans_eqvt = alpha_set_trans_eqvt alpha_res_trans_eqvt alpha_lst_trans_eqvt


section {* General Abstractions *}

fun
  alpha_abs_set 
where
  [simp del]:
  "alpha_abs_set (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>set (op=) supp p (cs, y))"

fun
  alpha_abs_lst
where
  [simp del]:
  "alpha_abs_lst (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>lst (op=) supp p (cs, y))"

fun
  alpha_abs_res
where
  [simp del]:
  "alpha_abs_res (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>res (op=) supp p (cs, y))"

notation
  alpha_abs_set (infix "\<approx>abs'_set" 50) and
  alpha_abs_lst (infix "\<approx>abs'_lst" 50) and
  alpha_abs_res (infix "\<approx>abs'_res" 50)

lemmas alphas_abs = alpha_abs_set.simps alpha_abs_res.simps alpha_abs_lst.simps


lemma alphas_abs_refl:
  shows "(bs, x) \<approx>abs_set (bs, x)"
  and   "(bs, x) \<approx>abs_res (bs, x)"
  and   "(cs, x) \<approx>abs_lst (cs, x)" 
  unfolding alphas_abs
  unfolding alphas
  unfolding fresh_star_def
  by (rule_tac [!] x="0" in exI)
     (simp_all add: fresh_zero_perm)

lemma alphas_abs_sym:
  shows "(bs, x) \<approx>abs_set (cs, y) \<Longrightarrow> (cs, y) \<approx>abs_set (bs, x)"
  and   "(bs, x) \<approx>abs_res (cs, y) \<Longrightarrow> (cs, y) \<approx>abs_res (bs, x)"
  and   "(ds, x) \<approx>abs_lst (es, y) \<Longrightarrow> (es, y) \<approx>abs_lst (ds, x)"
  unfolding alphas_abs
  unfolding alphas
  unfolding fresh_star_def
  by (erule_tac [!] exE, rule_tac [!] x="-p" in exI)
     (auto simp add: fresh_minus_perm)

lemma alphas_abs_trans:
  shows "\<lbrakk>(bs, x) \<approx>abs_set (cs, y); (cs, y) \<approx>abs_set (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>abs_set (ds, z)"
  and   "\<lbrakk>(bs, x) \<approx>abs_res (cs, y); (cs, y) \<approx>abs_res (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>abs_res (ds, z)"
  and   "\<lbrakk>(es, x) \<approx>abs_lst (gs, y); (gs, y) \<approx>abs_lst (hs, z)\<rbrakk> \<Longrightarrow> (es, x) \<approx>abs_lst (hs, z)"
  unfolding alphas_abs
  unfolding alphas
  unfolding fresh_star_def
  apply(erule_tac [!] exE, erule_tac [!] exE)
  apply(rule_tac [!] x="pa + p" in exI)
  by (simp_all add: fresh_plus_perm)

lemma alphas_abs_eqvt:
  shows "(bs, x) \<approx>abs_set (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>abs_set (p \<bullet> cs, p \<bullet> y)"
  and   "(bs, x) \<approx>abs_res (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>abs_res (p \<bullet> cs, p \<bullet> y)"
  and   "(ds, x) \<approx>abs_lst (es, y) \<Longrightarrow> (p \<bullet> ds, p \<bullet> x) \<approx>abs_lst (p \<bullet> es, p \<bullet> y)"
  unfolding alphas_abs
  unfolding alphas
  unfolding set_eqvt[symmetric]
  unfolding supp_eqvt[symmetric]
  unfolding Diff_eqvt[symmetric]
  apply(erule_tac [!] exE)
  apply(rule_tac [!] x="p \<bullet> pa" in exI)
  by (auto simp add: fresh_star_permute_iff permute_eqvt[symmetric])

quotient_type 
    'a abs_set = "(atom set \<times> 'a::pt)" / "alpha_abs_set"
and 'b abs_res = "(atom set \<times> 'b::pt)" / "alpha_abs_res"
and 'c abs_lst = "(atom list \<times> 'c::pt)" / "alpha_abs_lst"
  apply(rule_tac [!] equivpI)
  unfolding reflp_def symp_def transp_def
  by (auto intro: alphas_abs_sym alphas_abs_refl alphas_abs_trans simp only:)

quotient_definition
  Abs_set ("[_]set. _" [60, 60] 60)
where
  "Abs_set::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_set"
is
  "Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)"

quotient_definition
  Abs_res ("[_]res. _" [60, 60] 60)
where
  "Abs_res::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_res"
is
  "Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)"

quotient_definition
  Abs_lst ("[_]lst. _" [60, 60] 60)
where
  "Abs_lst::atom list \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_lst"
is
  "Pair::atom list \<Rightarrow> ('a::pt) \<Rightarrow> (atom list \<times> 'a)"

lemma [quot_respect]:
  shows "(op= ===> op= ===> alpha_abs_set) Pair Pair"
  and   "(op= ===> op= ===> alpha_abs_res) Pair Pair"
  and   "(op= ===> op= ===> alpha_abs_lst) Pair Pair"
  unfolding fun_rel_def
  by (auto intro: alphas_abs_refl)

lemma [quot_respect]:
  shows "(op= ===> alpha_abs_set ===> alpha_abs_set) permute permute"
  and   "(op= ===> alpha_abs_res ===> alpha_abs_res) permute permute"
  and   "(op= ===> alpha_abs_lst ===> alpha_abs_lst) permute permute"
  unfolding fun_rel_def
  by (auto intro: alphas_abs_eqvt simp only: Pair_eqvt)

lemma Abs_eq_iff:
  shows "Abs_set bs x = Abs_set cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>set (op =) supp p (cs, y))"
  and   "Abs_res bs x = Abs_res cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>res (op =) supp p (cs, y))"
  and   "Abs_lst bsl x = Abs_lst csl y \<longleftrightarrow> (\<exists>p. (bsl, x) \<approx>lst (op =) supp p (csl, y))"
  by (lifting alphas_abs)

lemma Abs_exhausts:
  shows "(\<And>as (x::'a::pt). y1 = Abs_set as x \<Longrightarrow> P1) \<Longrightarrow> P1"
  and   "(\<And>as (x::'a::pt). y2 = Abs_res as x \<Longrightarrow> P2) \<Longrightarrow> P2"
  and   "(\<And>as (x::'a::pt). y3 = Abs_lst as x \<Longrightarrow> P3) \<Longrightarrow> P3"
  by (lifting prod.exhaust[where 'a="atom set" and 'b="'a"]
              prod.exhaust[where 'a="atom set" and 'b="'a"]
              prod.exhaust[where 'a="atom list" and 'b="'a"])

instantiation abs_set :: (pt) pt
begin

quotient_definition
  "permute_abs_set::perm \<Rightarrow> ('a::pt abs_set) \<Rightarrow> 'a abs_set"
is
  "permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)"

lemma permute_Abs_set[simp]:
  fixes x::"'a::pt"  
  shows "(p \<bullet> (Abs_set as x)) = Abs_set (p \<bullet> as) (p \<bullet> x)"
  by (lifting permute_prod.simps[where 'a="atom set" and 'b="'a"])

instance
  apply(default)
  apply(case_tac [!] x rule: Abs_exhausts(1))
  apply(simp_all)
  done

end

instantiation abs_res :: (pt) pt
begin

quotient_definition
  "permute_abs_res::perm \<Rightarrow> ('a::pt abs_res) \<Rightarrow> 'a abs_res"
is
  "permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)"

lemma permute_Abs_res[simp]:
  fixes x::"'a::pt"  
  shows "(p \<bullet> (Abs_res as x)) = Abs_res (p \<bullet> as) (p \<bullet> x)"
  by (lifting permute_prod.simps[where 'a="atom set" and 'b="'a"])

instance
  apply(default)
  apply(case_tac [!] x rule: Abs_exhausts(2))
  apply(simp_all)
  done

end

instantiation abs_lst :: (pt) pt
begin

quotient_definition
  "permute_abs_lst::perm \<Rightarrow> ('a::pt abs_lst) \<Rightarrow> 'a abs_lst"
is
  "permute:: perm \<Rightarrow> (atom list \<times> 'a::pt) \<Rightarrow> (atom list \<times> 'a::pt)"

lemma permute_Abs_lst[simp]:
  fixes x::"'a::pt"  
  shows "(p \<bullet> (Abs_lst as x)) = Abs_lst (p \<bullet> as) (p \<bullet> x)"
  by (lifting permute_prod.simps[where 'a="atom list" and 'b="'a"])

instance
  apply(default)
  apply(case_tac [!] x rule: Abs_exhausts(3))
  apply(simp_all)
  done

end

lemmas permute_Abs[eqvt] = permute_Abs_set permute_Abs_res permute_Abs_lst


lemma Abs_swap1:
  assumes a1: "a \<notin> (supp x) - bs"
  and     a2: "b \<notin> (supp x) - bs"
  shows "Abs_set bs x = Abs_set ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x)"
  and   "Abs_res bs x = Abs_res ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x)"
  unfolding Abs_eq_iff
  unfolding alphas
  unfolding supp_eqvt[symmetric] Diff_eqvt[symmetric] 
  unfolding fresh_star_def fresh_def
  unfolding swap_set_not_in[OF a1 a2] 
  using a1 a2
  by (rule_tac [!] x="(a \<rightleftharpoons> b)" in exI)
     (auto simp add: supp_perm swap_atom)

lemma Abs_swap2:
  assumes a1: "a \<notin> (supp x) - (set bs)"
  and     a2: "b \<notin> (supp x) - (set bs)"
  shows "Abs_lst bs x = Abs_lst ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x)"
  unfolding Abs_eq_iff
  unfolding alphas
  unfolding supp_eqvt[symmetric] Diff_eqvt[symmetric] set_eqvt[symmetric]
  unfolding fresh_star_def fresh_def
  unfolding swap_set_not_in[OF a1 a2]
  using a1 a2
  by (rule_tac [!] x="(a \<rightleftharpoons> b)" in exI)
     (auto simp add: supp_perm swap_atom)

lemma Abs_supports:
  shows "((supp x) - as) supports (Abs_set as x)"
  and   "((supp x) - as) supports (Abs_res as x)"
  and   "((supp x) - set bs) supports (Abs_lst bs x)"
  unfolding supports_def
  unfolding permute_Abs
  by (simp_all add: Abs_swap1[symmetric] Abs_swap2[symmetric])

function
  supp_set  :: "('a::pt) abs_set \<Rightarrow> atom set"
where
  "supp_set (Abs_set as x) = supp x - as"
apply(case_tac x rule: Abs_exhausts(1))
apply(simp)
apply(simp add: Abs_eq_iff alphas_abs alphas)
done

termination supp_set 
  by (auto intro!: local.termination)

function
  supp_res :: "('a::pt) abs_res \<Rightarrow> atom set"
where
  "supp_res (Abs_res as x) = supp x - as"
apply(case_tac x rule: Abs_exhausts(2))
apply(simp)
apply(simp add: Abs_eq_iff alphas_abs alphas)
done

termination supp_res 
  by (auto intro!: local.termination)

function
  supp_lst :: "('a::pt) abs_lst \<Rightarrow> atom set"
where
  "supp_lst (Abs_lst cs x) = (supp x) - (set cs)"
apply(case_tac x rule: Abs_exhausts(3))
apply(simp)
apply(simp add: Abs_eq_iff alphas_abs alphas)
done

termination supp_lst 
  by (auto intro!: local.termination)

lemma [eqvt]:
  shows "(p \<bullet> supp_set x) = supp_set (p \<bullet> x)"
  and   "(p \<bullet> supp_res y) = supp_res (p \<bullet> y)"
  and   "(p \<bullet> supp_lst z) = supp_lst (p \<bullet> z)"
  apply(case_tac x rule: Abs_exhausts(1))
  apply(simp add: supp_eqvt Diff_eqvt)
  apply(case_tac y rule: Abs_exhausts(2))
  apply(simp add: supp_eqvt Diff_eqvt)
  apply(case_tac z rule: Abs_exhausts(3))
  apply(simp add: supp_eqvt Diff_eqvt set_eqvt)
  done

lemma Abs_fresh_aux:
  shows "a \<sharp> Abs bs x \<Longrightarrow> a \<sharp> supp_set (Abs bs x)"
  and   "a \<sharp> Abs_res bs x \<Longrightarrow> a \<sharp> supp_res (Abs_res bs x)"
  and   "a \<sharp> Abs_lst cs x \<Longrightarrow> a \<sharp> supp_lst (Abs_lst cs x)"
  by (rule_tac [!] fresh_fun_eqvt_app)
     (simp_all only: eqvts_raw)

lemma Abs_supp_subset1:
  assumes a: "finite (supp x)"
  shows "(supp x) - as \<subseteq> supp (Abs_set as x)"
  and   "(supp x) - as \<subseteq> supp (Abs_res as x)"
  and   "(supp x) - (set bs) \<subseteq> supp (Abs_lst bs x)"
  unfolding supp_conv_fresh
  by (auto dest!: Abs_fresh_aux)
     (simp_all add: fresh_def supp_finite_atom_set a)

lemma Abs_supp_subset2:
  assumes a: "finite (supp x)"
  shows "supp (Abs_set as x) \<subseteq> (supp x) - as"
  and   "supp (Abs_res as x) \<subseteq> (supp x) - as"
  and   "supp (Abs_lst bs x) \<subseteq> (supp x) - (set bs)"
  by (rule_tac [!] supp_is_subset)
     (simp_all add: Abs_supports a)

lemma Abs_finite_supp:
  assumes a: "finite (supp x)"
  shows "supp (Abs_set as x) = (supp x) - as"
  and   "supp (Abs_res as x) = (supp x) - as"
  and   "supp (Abs_lst bs x) = (supp x) - (set bs)"
  by (rule_tac [!] subset_antisym)
     (simp_all add: Abs_supp_subset1[OF a] Abs_supp_subset2[OF a])

lemma supp_Abs:
  fixes x::"'a::fs"
  shows "supp (Abs_set as x) = (supp x) - as"
  and   "supp (Abs_res as x) = (supp x) - as"
  and   "supp (Abs_lst bs x) = (supp x) - (set bs)"
  by (rule_tac [!] Abs_finite_supp)
     (simp_all add: finite_supp)

instance abs_set :: (fs) fs
  apply(default)
  apply(case_tac x rule: Abs_exhausts(1))
  apply(simp add: supp_Abs finite_supp)
  done

instance abs_res :: (fs) fs
  apply(default)
  apply(case_tac x rule: Abs_exhausts(2))
  apply(simp add: supp_Abs finite_supp)
  done

instance abs_lst :: (fs) fs
  apply(default)
  apply(case_tac x rule: Abs_exhausts(3))
  apply(simp add: supp_Abs finite_supp)
  done

lemma Abs_fresh_iff:
  fixes x::"'a::fs"
  shows "a \<sharp> Abs_set bs x \<longleftrightarrow> a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x)"
  and   "a \<sharp> Abs_res bs x \<longleftrightarrow> a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x)"
  and   "a \<sharp> Abs_lst cs x \<longleftrightarrow> a \<in> (set cs) \<or> (a \<notin> (set cs) \<and> a \<sharp> x)"
  unfolding fresh_def
  unfolding supp_Abs
  by auto

lemma Abs_fresh_star:
  fixes x::"'a::fs"
  shows "as \<sharp>* Abs_set as x"
  and   "as \<sharp>* Abs_res as x"
  and   "set bs \<sharp>* Abs_lst bs x"
  unfolding fresh_star_def
  by(simp_all add: Abs_fresh_iff)


section {* Infrastructure for building tuples of relations and functions *}

fun
  prod_fv :: "('a \<Rightarrow> atom set) \<Rightarrow> ('b \<Rightarrow> atom set) \<Rightarrow> ('a \<times> 'b) \<Rightarrow> atom set"
where
  "prod_fv fv1 fv2 (x, y) = fv1 x \<union> fv2 y"

definition 
  prod_alpha :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<times> 'b \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool)"
where
 "prod_alpha = prod_rel"

lemma [quot_respect]:
  shows "((R1 ===> op =) ===> (R2 ===> op =) ===> prod_rel R1 R2 ===> op =) prod_fv prod_fv"
  by auto

lemma [quot_preserve]:
  assumes q1: "Quotient R1 abs1 rep1"
  and     q2: "Quotient R2 abs2 rep2"
  shows "((abs1 ---> id) ---> (abs2 ---> id) ---> prod_fun rep1 rep2 ---> id) prod_fv = prod_fv"
  by (simp add: fun_eq_iff Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])

lemma [mono]: 
  shows "A <= B \<Longrightarrow> C <= D ==> prod_alpha A C <= prod_alpha B D"
  unfolding prod_alpha_def
  by auto

lemma [eqvt]: 
  shows "p \<bullet> prod_alpha A B x y = prod_alpha (p \<bullet> A) (p \<bullet> B) (p \<bullet> x) (p \<bullet> y)"
  unfolding prod_alpha_def
  unfolding prod_rel.simps
  by (perm_simp) (rule refl)

lemma [eqvt]: 
  shows "p \<bullet> prod_fv A B (x, y) = prod_fv (p \<bullet> A) (p \<bullet> B) (p \<bullet> x, p \<bullet> y)"
  unfolding prod_fv.simps
  by (perm_simp) (rule refl)

lemma prod_fv_supp:
  shows "prod_fv supp supp = supp"
by (rule ext)
   (auto simp add: prod_fv.simps supp_Pair)

lemma prod_alpha_eq:
  shows "prod_alpha (op=) (op=) = (op=)"
unfolding prod_alpha_def
by (auto intro!: ext)


end