theory Term4
imports "../NewAlpha" "../Abs" "../Perm" "../Rsp" "../Lift" "Quotient_List" "../../Attic/Prove"
begin
atom_decl name
section {*** lam with indirect list recursion ***}
datatype rtrm4 =
rVr4 "name"
| rAp4 "rtrm4" "rtrm4 list"
| rLm4 "name" "rtrm4" --"bind (name) in (trm)"
(* there cannot be a clause for lists, as *)
(* permutations are already defined in Nominal (also functions, options, and so on) *)
ML {*
val dtinfo = Datatype.the_info @{theory} "Term4.rtrm4";
val {descr, sorts, ...} = dtinfo;
*}
setup {* snd o (define_raw_perms descr sorts @{thm rtrm4.induct} 1) *}
lemmas perm = permute_rtrm4_permute_rtrm4_list.simps(1-3)
lemma perm_fix:
fixes ts::"rtrm4 list"
shows "permute_rtrm4_list p ts = p \<bullet> ts"
by (induct ts) simp_all
lemmas perm_fixed = perm[simplified perm_fix]
ML {* val bl = [[[BEmy 0], [BEmy 0, BEmy 1], [BSet ([(NONE, 0)], [1])]], [[], [BEmy 0, BEmy 1]]] *}
local_setup {* fn ctxt => let val (_, _, _, ctxt') = define_raw_fvs descr sorts [] bl ctxt in ctxt' end *}
lemmas fv = fv_rtrm4.simps (*fv_rtrm4_list.simps*)
lemma fv_fix: "fv_rtrm4_list = Union o (set o (map fv_rtrm4))"
by (rule ext) (induct_tac x, simp_all)
lemmas fv_fixed = fv[simplified fv_fix]
(* TODO: check remove 2 *)
local_setup {* snd o (prove_eqvt [@{typ rtrm4},@{typ "rtrm4 list"}] @{thm rtrm4.induct} @{thms perm_fixed fv_rtrm4.simps fv_rtrm4_list.simps} [@{term fv_rtrm4}, @{term fv_rtrm4_list}]) *}
thm eqvts(1-2)
local_setup {* snd o define_raw_alpha dtinfo [] bl [@{term fv_rtrm4}, @{term fv_rtrm4_list}] *}
local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_inj}, []), (build_rel_inj @{thms alpha_rtrm4_alpha_rtrm4_list.intros} @{thms rtrm4.distinct rtrm4.inject list.distinct list.inject} @{thms alpha_rtrm4.cases alpha_rtrm4_list.cases} ctxt)) ctxt)) *}
lemmas alpha_inj = alpha4_inj(1-3)
lemma alpha_fix: "alpha_rtrm4_list = list_all2 alpha_rtrm4"
apply (rule ext)+
apply (induct_tac x xa rule: list_induct2')
apply (simp_all add: alpha_rtrm4_alpha_rtrm4_list.intros)
apply clarify apply (erule alpha_rtrm4_list.cases) apply(simp_all)
apply clarify apply (erule alpha_rtrm4_list.cases) apply(simp_all)
apply rule
apply (erule alpha_rtrm4_list.cases)
apply simp_all
apply (rule alpha_rtrm4_alpha_rtrm4_list.intros)
apply simp_all
done
lemmas alpha_inj_fixed = alpha_inj[simplified alpha_fix (*fv_fix*)]
notation
alpha_rtrm4 ("_ \<approx>4 _" [100, 100] 100)
and alpha_rtrm4_list ("_ \<approx>4l _" [100, 100] 100)
declare perm_fixed[eqvt]
equivariance alpha_rtrm4
lemmas alpha4_eqvt = eqvts(1-2)
lemmas alpha4_eqvt_fixed = alpha4_eqvt(2)[simplified alpha_fix (*fv_fix*)]
local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_reflp}, []),
build_alpha_refl [((0, @{term alpha_rtrm4}), 0), ((0, @{term alpha_rtrm4_list}), 0)] [@{term alpha_rtrm4}, @{term alpha_rtrm4_list}] @{thm rtrm4.induct} @{thms alpha4_inj} ctxt) ctxt)) *}
thm alpha4_reflp
local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_equivp}, []),
(build_equivps [@{term alpha_rtrm4}, @{term alpha_rtrm4_list}] @{thms alpha4_reflp} @{thm alpha_rtrm4_alpha_rtrm4_list.induct} @{thms rtrm4.inject list.inject} @{thms alpha4_inj} @{thms rtrm4.distinct list.distinct} @{thms alpha_rtrm4_list.cases alpha_rtrm4.cases} @{thms alpha4_eqvt} ctxt)) ctxt)) *}
lemmas alpha4_equivp_fixed = alpha4_equivp[simplified alpha_fix fv_fix]
quotient_type
trm4 = rtrm4 / alpha_rtrm4
by (simp_all add: alpha4_equivp)
local_setup {*
(fn ctxt => ctxt
|> snd o (Quotient_Def.quotient_lift_const [] ("Vr4", @{term rVr4}))
|> snd o (Quotient_Def.quotient_lift_const [@{typ "trm4"}] ("Ap4", @{term rAp4}))
|> snd o (Quotient_Def.quotient_lift_const [] ("Lm4", @{term rLm4}))
|> snd o (Quotient_Def.quotient_lift_const [] ("fv_trm4", @{term fv_rtrm4})))
*}
print_theorems
lemma fv_rtrm4_rsp:
"xa \<approx>4 ya \<Longrightarrow> fv_rtrm4 xa = fv_rtrm4 ya"
"x \<approx>4l y \<Longrightarrow> fv_rtrm4_list x = fv_rtrm4_list y"
apply (induct rule: alpha_rtrm4_alpha_rtrm4_list.inducts)
apply (simp_all add: alpha_gen)
done
local_setup {* snd o prove_const_rsp [] @{binding fv_rtrm4_rsp'} [@{term fv_rtrm4}]
(fn _ => asm_full_simp_tac (@{simpset} addsimps @{thms fv_rtrm4_rsp}) 1) *}
print_theorems
local_setup {* snd o prove_const_rsp [] @{binding rVr4_rsp} [@{term rVr4}]
(fn _ => constr_rsp_tac @{thms alpha4_inj} @{thms fv_rtrm4_rsp alpha4_equivp} 1) *}
local_setup {* snd o prove_const_rsp [] @{binding rLm4_rsp} [@{term rLm4}]
(fn _ => constr_rsp_tac @{thms alpha4_inj} @{thms fv_rtrm4_rsp alpha4_equivp} 1) *}
lemma [quot_respect]:
"(alpha_rtrm4 ===> list_all2 alpha_rtrm4 ===> alpha_rtrm4) rAp4 rAp4"
by (simp add: alpha_inj_fixed)
local_setup {* snd o prove_const_rsp [] @{binding permute_rtrm4_rsp}
[@{term "permute :: perm \<Rightarrow> rtrm4 \<Rightarrow> rtrm4"}]
(fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha4_eqvt}) 1) *}
setup {* define_lifted_perms [@{typ trm4}] ["Term4.trm4"] [("permute_trm4", @{term "permute :: perm \<Rightarrow> rtrm4 \<Rightarrow> rtrm4"})] @{thms permute_rtrm4_permute_rtrm4_list_zero permute_rtrm4_permute_rtrm4_list_plus} *}
print_theorems
(* Instead of permute for trm4_list we may need the following 2 lemmas: *)
lemma [quot_preserve]: "(id ---> map rep_trm4 ---> map abs_trm4) permute = permute"
apply (simp add: expand_fun_eq)
apply clarify
apply (rename_tac "pi" x)
apply (induct_tac x)
apply simp
apply simp
apply (simp add: meta_eq_to_obj_eq[OF permute_trm4_def,simplified expand_fun_eq,simplified])
done
lemma [quot_respect]: "(op = ===> list_all2 alpha_rtrm4 ===> list_all2 alpha_rtrm4) permute permute"
apply simp
apply (rule allI)+
apply (induct_tac xa y rule: list_induct2')
apply simp_all
apply clarify
apply (erule alpha4_eqvt)
done
ML {*
map (lift_thm [@{typ trm4}] @{context}) @{thms perm_fixed}
*}
ML {* lift_thm [@{typ trm4}] @{context} @{thm rtrm4.induct} *}
ML {*
map (lift_thm [@{typ trm4}] @{context}) @{thms fv_rtrm4.simps[simplified fv_fix] fv_rtrm4_list.simps[simplified fv_fix]}
*}
ML {*
val liftd =
map (Local_Defs.unfold @{context} @{thms id_simps}) (
map (Local_Defs.fold @{context} @{thms alphas}) (
map (lift_thm [@{typ trm4}] @{context}) @{thms alpha_inj_fixed[unfolded alphas]}
)
)
*}
ML {*
map (lift_thm [@{typ trm4}] @{context})
(flat (map (distinct_rel @{context} @{thms alpha_rtrm4.cases alpha_rtrm4_list.cases}) [(@{thms rtrm4.distinct},@{term "alpha_rtrm4"})]))
*}
thm eqvts(6-7)
ML {*
map (lift_thm [@{typ trm4}] @{context}) @{thms eqvts(6-7)[simplified fv_fix]}
*}
end