simplified calculate_instance; worked around some clever code; clever code is unfortunately still there...needs to be removed
signature QUOTIENT_TACS =
sig
val regularize_tac: Proof.context -> int -> tactic
val all_inj_repabs_tac: Proof.context -> int -> tactic
val clean_tac: Proof.context -> int -> tactic
val procedure_tac: Proof.context -> thm -> int -> tactic
val lift_tac: Proof.context ->thm -> int -> tactic
val quotient_tac: Proof.context -> int -> tactic
end;
structure Quotient_Tacs: QUOTIENT_TACS =
struct
open Quotient_Info;
open Quotient_Type;
open Quotient_Term;
(* Since HOL_basic_ss is too "big" for us, we *)
(* need to set up our own minimal simpset. *)
fun mk_minimal_ss ctxt =
Simplifier.context ctxt empty_ss
setsubgoaler asm_simp_tac
setmksimps (mksimps [])
(* various helper fuctions *)
(* composition of two theorems, used in map *)
fun OF1 thm1 thm2 = thm2 RS thm1
(* makes sure a subgoal is solved *)
fun SOLVES' tac = tac THEN_ALL_NEW (K no_tac)
(* prints warning, if goal is unsolved *)
fun WARN (tac, msg) i st =
case Seq.pull ((SOLVES' tac) i st) of
NONE => (warning msg; Seq.single st)
| seqcell => Seq.make (fn () => seqcell)
fun RANGE_WARN xs = RANGE (map WARN xs)
fun atomize_thm thm =
let
val thm' = Thm.freezeT (forall_intr_vars thm)
val thm'' = ObjectLogic.atomize (cprop_of thm')
in
@{thm equal_elim_rule1} OF [thm'', thm']
end
(* Regularize Tactic *)
fun equiv_tac ctxt =
REPEAT_ALL_NEW (resolve_tac (equiv_rules_get ctxt))
fun equiv_solver_tac ss = equiv_tac (Simplifier.the_context ss)
val equiv_solver = Simplifier.mk_solver' "Equivalence goal solver" equiv_solver_tac
fun solve_equiv_assm ctxt thm =
case Seq.pull (equiv_tac ctxt 1 thm) of
SOME (t, _) => t
| _ => error "solve_equiv_assm failed."
fun prep_trm thy (x, (T, t)) =
(cterm_of thy (Var (x, T)), cterm_of thy t)
fun prep_ty thy (x, (S, ty)) =
(ctyp_of thy (TVar (x, S)), ctyp_of thy ty)
fun matching_prs thy pat trm =
let
val univ = Unify.matchers thy [(pat, trm)]
val SOME (env, _) = Seq.pull univ
val tenv = Vartab.dest (Envir.term_env env)
val tyenv = Vartab.dest (Envir.type_env env)
in
(map (prep_ty thy) tyenv, map (prep_trm thy) tenv)
end
(* calculates the instantiations for te lemmas *)
(* ball_reg_eqv_range and bex_reg_eqv_range *)
fun calculate_instance ctxt ball_bex_thm redex R1 R2 =
let
fun get_lhs thm = fst (Logic.dest_equals (Thm.concl_of thm))
val thy = ProofContext.theory_of ctxt
val typ_inst1 = map (SOME o ctyp_of thy) [domain_type (fastype_of R2)]
val trm_inst1 = map (SOME o cterm_of thy) [R2, R1]
val thm' = Drule.instantiate' typ_inst1 trm_inst1 ball_bex_thm
val inst2 = matching_prs thy (get_lhs thm') redex
val thm'' = Drule.instantiate inst2 thm'
in
SOME thm''
end
handle _ => NONE
(* FIXME/TODO: !!!CLEVER CODE!!! *)
(* FIXME/TODO: What is the place where the exception is raised, *)
(* FIXME/TODO: and which exception is it? *)
(* FIXME/TODO: Can one not find out from the types of R1 or R2, *)
(* FIXME/TODO: or from their form, when NONE should be returned? *)
fun ball_bex_range_simproc ss redex =
let
val ctxt = Simplifier.the_context ss
in
case redex of
(Const (@{const_name "Ball"}, _) $ (Const (@{const_name "Respects"}, _) $
(Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) =>
calculate_instance ctxt @{thm ball_reg_eqv_range[THEN eq_reflection]} redex R1 R2
| (Const (@{const_name "Bex"}, _) $ (Const (@{const_name "Respects"}, _) $
(Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) =>
calculate_instance ctxt @{thm bex_reg_eqv_range[THEN eq_reflection]} redex R1 R2
| _ => NONE
end
(* test whether DETERM makes any difference *)
fun quotient_tac ctxt = SOLVES'
(REPEAT_ALL_NEW (FIRST'
[rtac @{thm identity_quotient},
resolve_tac (quotient_rules_get ctxt)]))
fun quotient_solver_tac ss = quotient_tac (Simplifier.the_context ss)
val quotient_solver = Simplifier.mk_solver' "Quotient goal solver" quotient_solver_tac
fun solve_quotient_assm ctxt thm =
case Seq.pull (quotient_tac ctxt 1 thm) of
SOME (t, _) => t
| _ => error "solve_quotient_assm failed. Maybe a quotient_thm is missing"
(* 0. preliminary simplification step according to *)
(* thm ball_reg_eqv bex_reg_eqv babs_reg_eqv *)
(* ball_reg_eqv_range bex_reg_eqv_range *)
(* *)
(* 1. eliminating simple Ball/Bex instances *)
(* thm ball_reg_right bex_reg_left *)
(* *)
(* 2. monos *)
(* 3. commutation rules for ball and bex *)
(* thm ball_all_comm bex_ex_comm *)
(* *)
(* 4. then rel-equality (which need to be *)
(* instantiated to avoid loops) *)
(* thm eq_imp_rel *)
(* *)
(* 5. then simplification like 0 *)
(* *)
(* finally jump back to 1 *)
fun regularize_tac ctxt =
let
val thy = ProofContext.theory_of ctxt
val pat_ball = @{term "Ball (Respects (R1 ===> R2)) P"}
val pat_bex = @{term "Bex (Respects (R1 ===> R2)) P"}
val simproc = Simplifier.simproc_i thy "" [pat_ball, pat_bex] (K (ball_bex_range_simproc))
val simpset = (mk_minimal_ss ctxt)
addsimps @{thms ball_reg_eqv bex_reg_eqv babs_reg_eqv babs_simp}
addsimprocs [simproc] addSolver equiv_solver addSolver quotient_solver
val eq_eqvs = map (OF1 @{thm eq_imp_rel}) (equiv_rules_get ctxt)
in
simp_tac simpset THEN'
REPEAT_ALL_NEW (CHANGED o FIRST' [
resolve_tac @{thms ball_reg_right bex_reg_left},
resolve_tac (Inductive.get_monos ctxt),
resolve_tac @{thms ball_all_comm bex_ex_comm},
resolve_tac eq_eqvs,
simp_tac simpset])
end
(* Injection Tactic *)
(* looks for QUOT_TRUE assumtions, and in case its parameter *)
(* is an application, it returns the function and the argument *)
fun find_qt_asm asms =
let
fun find_fun trm =
case trm of
(Const(@{const_name Trueprop}, _) $ (Const (@{const_name QUOT_TRUE}, _) $ _)) => true
| _ => false
in
case find_first find_fun asms of
SOME (_ $ (_ $ (f $ a))) => SOME (f, a)
| _ => NONE
end
fun quot_true_simple_conv ctxt fnctn ctrm =
case (term_of ctrm) of
(Const (@{const_name QUOT_TRUE}, _) $ x) =>
let
val fx = fnctn x;
val thy = ProofContext.theory_of ctxt;
val cx = cterm_of thy x;
val cfx = cterm_of thy fx;
val cxt = ctyp_of thy (fastype_of x);
val cfxt = ctyp_of thy (fastype_of fx);
val thm = Drule.instantiate' [SOME cxt, SOME cfxt] [SOME cx, SOME cfx] @{thm QUOT_TRUE_imp}
in
Conv.rewr_conv thm ctrm
end
fun quot_true_conv ctxt fnctn ctrm =
case (term_of ctrm) of
(Const (@{const_name QUOT_TRUE}, _) $ _) =>
quot_true_simple_conv ctxt fnctn ctrm
| _ $ _ => Conv.comb_conv (quot_true_conv ctxt fnctn) ctrm
| Abs _ => Conv.abs_conv (fn (_, ctxt) => quot_true_conv ctxt fnctn) ctxt ctrm
| _ => Conv.all_conv ctrm
fun quot_true_tac ctxt fnctn =
CONVERSION
((Conv.params_conv ~1 (fn ctxt =>
(Conv.prems_conv ~1 (quot_true_conv ctxt fnctn)))) ctxt)
fun dest_comb (f $ a) = (f, a)
fun dest_bcomb ((_ $ l) $ r) = (l, r)
(* TODO: Can this be done easier? *)
fun unlam t =
case t of
(Abs a) => snd (Term.dest_abs a)
| _ => unlam (Abs("", domain_type (fastype_of t), (incr_boundvars 1 t) $ (Bound 0)))
fun dest_fun_type (Type("fun", [T, S])) = (T, S)
| dest_fun_type _ = error "dest_fun_type"
val bare_concl = HOLogic.dest_Trueprop o Logic.strip_assums_concl
(* we apply apply_rsp only in case if the type needs lifting, *)
(* which is the case if the type of the data in the QUOT_TRUE *)
(* assumption is different from the corresponding type in the goal *)
val apply_rsp_tac =
Subgoal.FOCUS (fn {concl, asms, context,...} =>
let
val bare_concl = HOLogic.dest_Trueprop (term_of concl)
val qt_asm = find_qt_asm (map term_of asms)
in
case (bare_concl, qt_asm) of
(R2 $ (f $ x) $ (g $ y), SOME (qt_fun, qt_arg)) =>
if (fastype_of qt_fun) = (fastype_of f)
then no_tac
else
let
val ty_x = fastype_of x
val ty_b = fastype_of qt_arg
val ty_f = range_type (fastype_of f)
val thy = ProofContext.theory_of context
val ty_inst = map (SOME o (ctyp_of thy)) [ty_x, ty_b, ty_f]
val t_inst = map (SOME o (cterm_of thy)) [R2, f, g, x, y];
val inst_thm = Drule.instantiate' ty_inst ([NONE, NONE, NONE] @ t_inst) @{thm apply_rsp}
in
(rtac inst_thm THEN' quotient_tac context) 1
end
| _ => no_tac
end)
fun equals_rsp_tac R ctxt =
let
val ty = domain_type (fastype_of R);
val thy = ProofContext.theory_of ctxt
val thm = Drule.instantiate'
[SOME (ctyp_of thy ty)] [SOME (cterm_of thy R)] @{thm equals_rsp}
in
rtac thm THEN' quotient_tac ctxt
end
(* raised by instantiate' *)
handle THM _ => K no_tac
| TYPE _ => K no_tac
| TERM _ => K no_tac
fun rep_abs_rsp_tac ctxt =
SUBGOAL (fn (goal, i) =>
case (bare_concl goal) of
(rel $ _ $ (rep $ (abs $ _))) =>
(let
val thy = ProofContext.theory_of ctxt;
val (ty_a, ty_b) = dest_fun_type (fastype_of abs);
val ty_inst = map (SOME o (ctyp_of thy)) [ty_a, ty_b];
val t_inst = map (SOME o (cterm_of thy)) [rel, abs, rep];
val inst_thm = Drule.instantiate' ty_inst t_inst @{thm rep_abs_rsp}
in
(rtac inst_thm THEN' quotient_tac ctxt) i
end
handle THM _ => no_tac | TYPE _ => no_tac)
| _ => no_tac)
(* FIXME /TODO needs to be adapted *)
(*
To prove that the regularised theorem implies the abs/rep injected,
we try:
1) theorems 'trans2' from the appropriate QUOT_TYPE
2) remove lambdas from both sides: lambda_rsp_tac
3) remove Ball/Bex from the right hand side
4) use user-supplied RSP theorems
5) remove rep_abs from the right side
6) reflexivity of equality
7) split applications of lifted type (apply_rsp)
8) split applications of non-lifted type (cong_tac)
9) apply extentionality
A) reflexivity of the relation
B) assumption
(Lambdas under respects may have left us some assumptions)
C) proving obvious higher order equalities by simplifying fun_rel
(not sure if it is still needed?)
D) unfolding lambda on one side
E) simplifying (= ===> =) for simpler respectfulness
*)
fun inj_repabs_tac_match ctxt = SUBGOAL (fn (goal, i) =>
(case (bare_concl goal) of
(* (R1 ===> R2) (%x...) (%x...) ----> [|R1 x y|] ==> R2 (...x) (...y) *)
(Const (@{const_name fun_rel}, _) $ _ $ _) $ (Abs _) $ (Abs _)
=> rtac @{thm fun_rel_id} THEN' quot_true_tac ctxt unlam
(* (op =) (Ball...) (Ball...) ----> (op =) (...) (...) *)
| (Const (@{const_name "op ="},_) $
(Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
(Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _))
=> rtac @{thm ball_rsp} THEN' dtac @{thm QT_all}
(* (R1 ===> op =) (Ball...) (Ball...) ----> [|R1 x y|] ==> (Ball...x) = (Ball...y) *)
| (Const (@{const_name fun_rel}, _) $ _ $ _) $
(Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
(Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _)
=> rtac @{thm fun_rel_id} THEN' quot_true_tac ctxt unlam
(* (op =) (Bex...) (Bex...) ----> (op =) (...) (...) *)
| Const (@{const_name "op ="},_) $
(Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
(Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _)
=> rtac @{thm bex_rsp} THEN' dtac @{thm QT_ex}
(* (R1 ===> op =) (Bex...) (Bex...) ----> [|R1 x y|] ==> (Bex...x) = (Bex...y) *)
| (Const (@{const_name fun_rel}, _) $ _ $ _) $
(Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
(Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _)
=> rtac @{thm fun_rel_id} THEN' quot_true_tac ctxt unlam
| (_ $
(Const(@{const_name Babs},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
(Const(@{const_name Babs},_) $ (Const (@{const_name Respects}, _) $ _) $ _))
=> rtac @{thm babs_rsp} THEN' RANGE [quotient_tac ctxt]
| Const (@{const_name "op ="},_) $ (R $ _ $ _) $ (_ $ _ $ _) =>
(rtac @{thm refl} ORELSE'
(equals_rsp_tac R ctxt THEN' RANGE [
quot_true_tac ctxt (fst o dest_bcomb), quot_true_tac ctxt (snd o dest_bcomb)]))
(* reflexivity of operators arising from Cong_tac *)
| Const (@{const_name "op ="},_) $ _ $ _ => rtac @{thm refl}
(* respectfulness of constants; in particular of a simple relation *)
| _ $ (Const _) $ (Const _) (* fun_rel, list_rel, etc but not equality *)
=> resolve_tac (rsp_rules_get ctxt) THEN_ALL_NEW quotient_tac ctxt
(* R (...) (Rep (Abs ...)) ----> R (...) (...) *)
(* observe fun_map *)
| _ $ _ $ _
=> (rtac @{thm quot_rel_rsp} THEN_ALL_NEW quotient_tac ctxt)
ORELSE' rep_abs_rsp_tac ctxt
| _ => K no_tac
) i)
fun inj_repabs_step_tac ctxt rel_refl =
FIRST' [
inj_repabs_tac_match ctxt,
(* R (t $ ...) (t' $ ...) ----> apply_rsp provided type of t needs lifting *)
apply_rsp_tac ctxt THEN'
RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)],
(* (op =) (t $ ...) (t' $ ...) ----> Cong provided type of t does not need lifting *)
(* merge with previous tactic *)
Cong_Tac.cong_tac @{thm cong} THEN'
RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)],
(* (op =) (%x...) (%y...) ----> (op =) (...) (...) *)
rtac @{thm ext} THEN' quot_true_tac ctxt unlam,
(* resolving with R x y assumptions *)
atac,
(* reflexivity of the basic relations *)
(* R ... ... *)
resolve_tac rel_refl]
fun inj_repabs_tac ctxt =
let
val rel_refl = map (OF1 @{thm equivp_reflp}) (equiv_rules_get ctxt)
in
simp_tac ((mk_minimal_ss ctxt) addsimps (id_simps_get ctxt)) (* HACK? *)
THEN' inj_repabs_step_tac ctxt rel_refl
end
fun all_inj_repabs_tac ctxt =
REPEAT_ALL_NEW (inj_repabs_tac ctxt)
(* Cleaning of the Theorem *)
(* expands all fun_maps, except in front of bound variables *)
fun fun_map_simple_conv xs ctrm =
case (term_of ctrm) of
((Const (@{const_name "fun_map"}, _) $ _ $ _) $ h $ _) =>
if (member (op=) xs h)
then Conv.all_conv ctrm
else Conv.rewr_conv @{thm fun_map.simps[THEN eq_reflection]} ctrm
| _ => Conv.all_conv ctrm
fun fun_map_conv xs ctxt ctrm =
case (term_of ctrm) of
_ $ _ => (Conv.comb_conv (fun_map_conv xs ctxt) then_conv
fun_map_simple_conv xs) ctrm
| Abs _ => Conv.abs_conv (fn (x, ctxt) => fun_map_conv ((term_of x)::xs) ctxt) ctxt ctrm
| _ => Conv.all_conv ctrm
fun fun_map_tac ctxt = CONVERSION (fun_map_conv [] ctxt)
fun mk_abs u i t =
if incr_boundvars i u aconv t then Bound i
else (case t of
t1 $ t2 => (mk_abs u i t1) $ (mk_abs u i t2)
| Abs (s, T, t') => Abs (s, T, mk_abs u (i + 1) t')
| Bound j => if i = j then error "make_inst" else t
| _ => t)
fun make_inst lhs t =
let
val _ $ (Abs (_, _, (_ $ ((f as Var (_, Type ("fun", [T, _]))) $ u)))) = lhs;
val _ $ (Abs (_, _, (_ $ g))) = t;
in
(f, Abs ("x", T, mk_abs u 0 g))
end
fun make_inst_id lhs t =
let
val _ $ (Abs (_, _, (f as Var (_, Type ("fun", [T, _]))) $ u)) = lhs;
val _ $ (Abs (_, _, g)) = t;
in
(f, Abs ("x", T, mk_abs u 0 g))
end
(* Simplifies a redex using the 'lambda_prs' theorem. *)
(* First instantiates the types and known subterms. *)
(* Then solves the quotient assumptions to get Rep2 and Abs1 *)
(* Finally instantiates the function f using make_inst *)
(* If Rep2 is identity then the pattern is simpler and *)
(* make_inst_id is used *)
fun lambda_prs_simple_conv ctxt ctrm =
case (term_of ctrm) of
(Const (@{const_name fun_map}, _) $ r1 $ a2) $ (Abs _) =>
(let
val thy = ProofContext.theory_of ctxt
val (ty_b, ty_a) = dest_fun_type (fastype_of r1)
val (ty_c, ty_d) = dest_fun_type (fastype_of a2)
val tyinst = map (SOME o (ctyp_of thy)) [ty_a, ty_b, ty_c, ty_d]
val tinst = [NONE, NONE, SOME (cterm_of thy r1), NONE, SOME (cterm_of thy a2)]
val lpi = Drule.instantiate' tyinst tinst @{thm lambda_prs[THEN eq_reflection]}
val te = solve_quotient_assm ctxt (solve_quotient_assm ctxt lpi)
val ts = MetaSimplifier.rewrite_rule (id_simps_get ctxt) te
val make_inst = if ty_c = ty_d then make_inst_id else make_inst
val (insp, inst) = make_inst (term_of (Thm.lhs_of ts)) (term_of ctrm)
val ti = Drule.instantiate ([], [(cterm_of thy insp, cterm_of thy inst)]) ts
in
Conv.rewr_conv ti ctrm
end
handle _ => Conv.all_conv ctrm)
| _ => Conv.all_conv ctrm
val lambda_prs_conv =
More_Conv.top_conv lambda_prs_simple_conv
fun lambda_prs_tac ctxt = CONVERSION (lambda_prs_conv ctxt)
(* 1. folding of definitions and preservation lemmas; *)
(* and simplification with *)
(* thm babs_prs all_prs ex_prs *)
(* *)
(* 2. unfolding of ---> in front of everything, except *)
(* bound variables (this prevents lambda_prs from *)
(* becoming stuck *)
(* thm fun_map.simps *)
(* *)
(* 3. simplification with *)
(* thm lambda_prs *)
(* *)
(* 4. simplification with *)
(* thm Quotient_abs_rep Quotient_rel_rep id_simps *)
(* *)
(* 5. Test for refl *)
fun clean_tac_aux lthy =
let
val thy = ProofContext.theory_of lthy;
val defs = map (Thm.varifyT o symmetric o #def) (qconsts_dest thy)
(* FIXME: why is the Thm.varifyT needed: example where it fails is LamEx *)
val thms1 = defs @ (prs_rules_get lthy) @ @{thms babs_prs all_prs ex_prs}
val thms2 = @{thms Quotient_abs_rep Quotient_rel_rep} @ (id_simps_get lthy)
fun simps thms = (mk_minimal_ss lthy) addsimps thms addSolver quotient_solver
in
EVERY' [simp_tac (simps thms1),
fun_map_tac lthy,
lambda_prs_tac lthy,
simp_tac (simps thms2),
TRY o rtac refl]
end
fun clean_tac lthy = REPEAT o CHANGED o (clean_tac_aux lthy) (* HACK?? *)
(* Tactic for Genralisation of Free Variables in a Goal *)
fun inst_spec ctrm =
Drule.instantiate' [SOME (ctyp_of_term ctrm)] [NONE, SOME ctrm] @{thm spec}
fun inst_spec_tac ctrms =
EVERY' (map (dtac o inst_spec) ctrms)
fun all_list xs trm =
fold (fn (x, T) => fn t' => HOLogic.mk_all (x, T, t')) xs trm
fun apply_under_Trueprop f =
HOLogic.dest_Trueprop #> f #> HOLogic.mk_Trueprop
fun gen_frees_tac ctxt =
SUBGOAL (fn (concl, i) =>
let
val thy = ProofContext.theory_of ctxt
val vrs = Term.add_frees concl []
val cvrs = map (cterm_of thy o Free) vrs
val concl' = apply_under_Trueprop (all_list vrs) concl
val goal = Logic.mk_implies (concl', concl)
val rule = Goal.prove ctxt [] [] goal
(K (EVERY1 [inst_spec_tac (rev cvrs), atac]))
in
rtac rule i
end)
(* The General Shape of the Lifting Procedure *)
(* - A is the original raw theorem *)
(* - B is the regularized theorem *)
(* - C is the rep/abs injected version of B *)
(* - D is the lifted theorem *)
(* *)
(* - 1st prem is the regularization step *)
(* - 2nd prem is the rep/abs injection step *)
(* - 3rd prem is the cleaning part *)
(* *)
(* the QUOT_TRUE premise in 2 records the lifted theorem *)
val lifting_procedure =
@{lemma "[|A;
A --> B;
QUOT_TRUE D ==> B = C;
C = D|] ==> D"
by (simp add: QUOT_TRUE_def)}
fun lift_match_error ctxt fun_str rtrm qtrm =
let
val rtrm_str = Syntax.string_of_term ctxt rtrm
val qtrm_str = Syntax.string_of_term ctxt qtrm
val msg = cat_lines [enclose "[" "]" fun_str, "The quotient theorem", qtrm_str,
"", "does not match with original theorem", rtrm_str]
in
error msg
end
fun procedure_inst ctxt rtrm qtrm =
let
val thy = ProofContext.theory_of ctxt
val rtrm' = HOLogic.dest_Trueprop rtrm
val qtrm' = HOLogic.dest_Trueprop qtrm
val reg_goal =
Syntax.check_term ctxt (regularize_trm ctxt rtrm' qtrm')
handle (LIFT_MATCH s) => lift_match_error ctxt s rtrm qtrm
val inj_goal =
Syntax.check_term ctxt (inj_repabs_trm ctxt (reg_goal, qtrm'))
handle (LIFT_MATCH s) => lift_match_error ctxt s rtrm qtrm
in
Drule.instantiate' []
[SOME (cterm_of thy rtrm'),
SOME (cterm_of thy reg_goal),
NONE,
SOME (cterm_of thy inj_goal)] lifting_procedure
end
(* the tactic leaves three subgoals to be proved *)
fun procedure_tac ctxt rthm =
ObjectLogic.full_atomize_tac
THEN' gen_frees_tac ctxt
THEN' CSUBGOAL (fn (goal, i) =>
let
val rthm' = atomize_thm rthm
val rule = procedure_inst ctxt (prop_of rthm') (term_of goal)
in
(rtac rule THEN' rtac rthm') i
end)
(* Automatic Proofs *)
val msg1 = "Regularize proof failed."
val msg2 = cat_lines ["Injection proof failed.",
"This is probably due to missing respects lemmas.",
"Try invoking the injection method manually to see",
"which lemmas are missing."]
val msg3 = "Cleaning proof failed."
fun lift_tac ctxt rthm =
procedure_tac ctxt rthm
THEN' RANGE_WARN
[(regularize_tac ctxt, msg1),
(all_inj_repabs_tac ctxt, msg2),
(clean_tac ctxt, msg3)]
end; (* structure *)