Simplifying arguments; got rid of trans2_thm.
(*notation ( output) "prop" ("#_" [1000] 1000) *)
notation ( output) "Trueprop" ("#_" [1000] 1000)
ML {*
fun dest_cbinop t =
let
val (t2, rhs) = Thm.dest_comb t;
val (bop, lhs) = Thm.dest_comb t2;
in
(bop, (lhs, rhs))
end
*}
ML {*
fun dest_ceq t =
let
val (bop, pair) = dest_cbinop t;
val (bop_s, _) = Term.dest_Const (Thm.term_of bop);
in
if bop_s = "op =" then pair else (raise CTERM ("Not an equality", [t]))
end
*}
ML {*
fun split_binop_conv t =
let
val (lhs, rhs) = dest_ceq t;
val (bop, _) = dest_cbinop lhs;
val [clT, cr2] = bop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
val [cmT, crT] = Thm.dest_ctyp cr2;
in
Drule.instantiate' [SOME clT, SOME cmT, SOME crT] [NONE, NONE, NONE, NONE, SOME bop] @{thm arg_cong2}
end
*}
ML {*
fun split_arg_conv t =
let
val (lhs, rhs) = dest_ceq t;
val (lop, larg) = Thm.dest_comb lhs;
val [caT, crT] = lop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
in
Drule.instantiate' [SOME caT, SOME crT] [NONE, NONE, SOME lop] @{thm arg_cong}
end
*}
ML {*
fun split_binop_tac n thm =
let
val concl = Thm.cprem_of thm n;
val (_, cconcl) = Thm.dest_comb concl;
val rewr = split_binop_conv cconcl;
in
rtac rewr n thm
end
handle CTERM _ => Seq.empty
*}
ML {*
fun split_arg_tac n thm =
let
val concl = Thm.cprem_of thm n;
val (_, cconcl) = Thm.dest_comb concl;
val rewr = split_arg_conv cconcl;
in
rtac rewr n thm
end
handle CTERM _ => Seq.empty
*}
lemma trueprop_cong:
shows "(a \<equiv> b) \<Longrightarrow> (Trueprop a \<equiv> Trueprop b)"
by auto
lemma list_induct_hol4:
fixes P :: "'a list \<Rightarrow> bool"
assumes a: "((P []) \<and> (\<forall>t. (P t) \<longrightarrow> (\<forall>h. (P (h # t)))))"
shows "\<forall>l. (P l)"
using a
apply (rule_tac allI)
apply (induct_tac "l")
apply (simp)
apply (metis)
done
ML {*
val no_vars = Thm.rule_attribute (fn context => fn th =>
let
val ctxt = Variable.set_body false (Context.proof_of context);
val ((_, [th']), _) = Variable.import true [th] ctxt;
in th' end);
*}
(*lemma equality_twice:
"a = c \<Longrightarrow> b = d \<Longrightarrow> (a = b \<longrightarrow> c = d)"
by auto*)