theory IntEx2
imports QuotMain
uses
("Tools/numeral.ML")
("Tools/numeral_syntax.ML")
("Tools/int_arith.ML")
begin
fun
intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" (infix "\<approx>" 50)
where
"intrel (x, y) (u, v) = (x + v = u + y)"
quotient int = "nat \<times> nat" / intrel
apply(unfold equivp_def)
apply(auto simp add: mem_def expand_fun_eq)
done
instantiation int :: "{zero, one, plus, minus, uminus, times, ord, abs, sgn}"
begin
quotient_def
zero_qnt::"int"
where
"zero_qnt \<equiv> (0::nat, 0::nat)"
definition Zero_int_def[code del]:
"0 = zero_qnt"
quotient_def
one_qnt::"int"
where
"one_qnt \<equiv> (1::nat, 0::nat)"
definition One_int_def[code del]:
"1 = one_qnt"
fun
plus_raw :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"plus_raw (x, y) (u, v) = (x + u, y + v)"
quotient_def
plus_qnt::"int \<Rightarrow> int \<Rightarrow> int"
where
"plus_qnt \<equiv> plus_raw"
definition add_int_def[code del]:
"z + w = plus_qnt z w"
fun
minus_raw :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"minus_raw (x, y) = (y, x)"
quotient_def
minus_qnt::"int \<Rightarrow> int"
where
"minus_qnt \<equiv> minus_raw"
definition minus_int_def [code del]:
"- z = minus_qnt z"
definition
diff_int_def [code del]: "z - w = z + (-w::int)"
fun
mult_raw :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"mult_raw (x, y) (u, v) = (x*u + y*v, x*v + y*u)"
quotient_def
mult_qnt::"int \<Rightarrow> int \<Rightarrow> int"
where
"mult_qnt \<equiv> mult_raw"
definition
mult_int_def [code del]: "z * w = mult_qnt z w"
fun
le_raw :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool"
where
"le_raw (x, y) (u, v) = (x+v \<le> u+y)"
quotient_def
le_qnt :: "int \<Rightarrow> int \<Rightarrow> bool"
where
"le_qnt \<equiv> le_raw"
definition
le_int_def [code del]:
"z \<le> w = le_qnt z w"
definition
less_int_def [code del]: "(z\<Colon>int) < w = (z \<le> w \<and> z \<noteq> w)"
definition
zabs_def: "\<bar>i\<Colon>int\<bar> = (if i < 0 then - i else i)"
definition
zsgn_def: "sgn (i\<Colon>int) = (if i=0 then 0 else if 0<i then 1 else - 1)"
instance ..
end
thm add_assoc
lemma plus_raw_rsp[quotient_rsp]:
shows "(op \<approx> ===> op \<approx> ===> op \<approx>) plus_raw plus_raw"
by auto
lemma minus_raw_rsp[quotient_rsp]:
shows "(op \<approx> ===> op \<approx>) minus_raw minus_raw"
by auto
lemma mult_raw_rsp[quotient_rsp]:
shows "(op \<approx> ===> op \<approx> ===> op \<approx>) mult_raw mult_raw"
apply(auto)
apply(simp add: mult algebra_simps)
sorry
lemma le_raw_rsp[quotient_rsp]:
shows "(op \<approx> ===> op \<approx> ===> op =) le_raw le_raw"
by auto
lemma plus_assoc_raw:
shows "plus_raw (plus_raw i j) k \<approx> plus_raw i (plus_raw j k)"
by (cases i, cases j, cases k) (simp)
lemma plus_sym_raw:
shows "plus_raw i j \<approx> plus_raw j i"
by (cases i, cases j) (simp)
lemma plus_zero_raw:
shows "plus_raw (0, 0) i \<approx> i"
by (cases i) (simp)
lemma plus_minus_zero_raw:
shows "plus_raw (minus_raw i) i \<approx> (0, 0)"
by (cases i) (simp)
lemma mult_assoc_raw:
shows "mult_raw (mult_raw i j) k \<approx> mult_raw i (mult_raw j k)"
by (cases i, cases j, cases k)
(simp add: mult algebra_simps)
lemma mult_sym_raw:
shows "mult_raw i j \<approx> mult_raw j i"
by (cases i, cases j) (simp)
lemma mult_one_raw:
shows "mult_raw (1, 0) i \<approx> i"
by (cases i) (simp)
lemma mult_plus_comm_raw:
shows "mult_raw (plus_raw i j) k \<approx> plus_raw (mult_raw i k) (mult_raw j k)"
by (cases i, cases j, cases k)
(simp add: mult algebra_simps)
lemma one_zero_distinct:
shows "\<not> (0, 0) \<approx> ((1::nat), (0::nat))"
by simp
text{*The integers form a @{text comm_ring_1}*}
ML {* val qty = @{typ "int"} *}
ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "int" *}
instance int :: comm_ring_1
proof
fix i j k :: int
show "(i + j) + k = i + (j + k)"
unfolding add_int_def
apply(tactic {* lift_tac @{context} @{thm plus_assoc_raw} 1 *})
done
show "i + j = j + i"
unfolding add_int_def
apply(tactic {* lift_tac @{context} @{thm plus_sym_raw} 1 *})
done
show "0 + i = (i::int)"
unfolding add_int_def Zero_int_def
apply(tactic {* lift_tac @{context} @{thm plus_zero_raw} 1 *})
done
show "- i + i = 0"
unfolding add_int_def minus_int_def Zero_int_def
apply(tactic {* lift_tac @{context} @{thm plus_minus_zero_raw} 1 *})
done
show "i - j = i + - j"
by (simp add: diff_int_def)
show "(i * j) * k = i * (j * k)"
unfolding mult_int_def
apply(tactic {* lift_tac @{context} @{thm mult_assoc_raw} 1 *})
done
show "i * j = j * i"
unfolding mult_int_def
apply(tactic {* lift_tac @{context} @{thm mult_sym_raw} 1 *})
done
show "1 * i = i"
unfolding mult_int_def One_int_def
apply(tactic {* lift_tac @{context} @{thm mult_one_raw} 1 *})
done
show "(i + j) * k = i * k + j * k"
unfolding mult_int_def add_int_def
apply(tactic {* lift_tac @{context} @{thm mult_plus_comm_raw} 1 *})
done
show "0 \<noteq> (1::int)"
unfolding Zero_int_def One_int_def
apply(tactic {* lift_tac @{context} @{thm one_zero_distinct} 1 *})
done
qed
term of_nat
thm of_nat_def
lemma int_def: "of_nat m = ABS_int (m, 0)"
apply(induct m)
apply(simp add: Zero_int_def zero_qnt_def)
apply(simp)
apply(simp add: add_int_def One_int_def)
apply(simp add: plus_qnt_def one_qnt_def)
oops
lemma le_antisym_raw:
shows "le_raw i j \<Longrightarrow> le_raw j i \<Longrightarrow> i \<approx> j"
by (cases i, cases j) (simp)
lemma le_refl_raw:
shows "le_raw i i"
by (cases i) (simp)
lemma le_trans_raw:
shows "le_raw i j \<Longrightarrow> le_raw j k \<Longrightarrow> le_raw i k"
by (cases i, cases j, cases k) (simp)
lemma le_cases_raw:
shows "le_raw i j \<or> le_raw j i"
by (cases i, cases j)
(simp add: linorder_linear)
instance int :: linorder
proof
fix i j k :: int
show antisym: "i \<le> j \<Longrightarrow> j \<le> i \<Longrightarrow> i = j"
unfolding le_int_def
apply(tactic {* lift_tac @{context} @{thm le_antisym_raw} 1 *})
done
show "(i < j) = (i \<le> j \<and> \<not> j \<le> i)"
by (auto simp add: less_int_def dest: antisym)
show "i \<le> i"
unfolding le_int_def
apply(tactic {* lift_tac @{context} @{thm le_refl_raw} 1 *})
done
show "i \<le> j \<Longrightarrow> j \<le> k \<Longrightarrow> i \<le> k"
unfolding le_int_def
apply(tactic {* lift_tac @{context} @{thm le_trans_raw} 1 *})
done
show "i \<le> j \<or> j \<le> i"
unfolding le_int_def
apply(tactic {* lift_tac @{context} @{thm le_cases_raw} 1 *})
done
qed
instantiation int :: distrib_lattice
begin
definition
"(inf \<Colon> int \<Rightarrow> int \<Rightarrow> int) = min"
definition
"(sup \<Colon> int \<Rightarrow> int \<Rightarrow> int) = max"
instance
by intro_classes
(auto simp add: inf_int_def sup_int_def min_max.sup_inf_distrib1)
end
lemma le_plus_raw:
shows "le_raw i j \<Longrightarrow> le_raw (plus_raw k i) (plus_raw k j)"
by (cases i, cases j, cases k) (simp)
instance int :: pordered_cancel_ab_semigroup_add
proof
fix i j k :: int
show "i \<le> j \<Longrightarrow> k + i \<le> k + j"
unfolding le_int_def add_int_def
apply(tactic {* lift_tac @{context} @{thm le_plus_raw} 1 *})
done
qed
lemma test:
"\<lbrakk>le_raw i j \<and> \<not>i \<approx> j; le_raw (0, 0) k \<and> \<not>(0, 0) \<approx> k\<rbrakk>
\<Longrightarrow> le_raw (mult_raw k i) (mult_raw k j) \<and> \<not>mult_raw k i \<approx> mult_raw k j"
apply(cases i, cases j, cases k)
apply(auto simp add: mult algebra_simps)
sorry
text{*The integers form an ordered integral domain*}
instance int :: ordered_idom
proof
fix i j k :: int
show "i < j \<Longrightarrow> 0 < k \<Longrightarrow> k * i < k * j"
unfolding mult_int_def le_int_def less_int_def Zero_int_def
apply(tactic {* lift_tac @{context} @{thm test} 1 *})
done
show "\<bar>i\<bar> = (if i < 0 then -i else i)"
by (simp only: zabs_def)
show "sgn (i\<Colon>int) = (if i=0 then 0 else if 0<i then 1 else - 1)"
by (simp only: zsgn_def)
qed
instance int :: lordered_ring
proof
fix k :: int
show "abs k = sup k (- k)"
by (auto simp add: sup_int_def zabs_def less_minus_self_iff [symmetric])
qed
lemmas int_distrib =
left_distrib [of "z1::int" "z2" "w", standard]
right_distrib [of "w::int" "z1" "z2", standard]
left_diff_distrib [of "z1::int" "z2" "w", standard]
right_diff_distrib [of "w::int" "z1" "z2", standard]
subsection {* Embedding of the Integers into any @{text ring_1}: @{text of_int}*}
(*
context ring_1
begin
definition
of_int :: "int \<Rightarrow> 'a"
where
"of_int
*)
subsection {* Binary representation *}
text {*
This formalization defines binary arithmetic in terms of the integers
rather than using a datatype. This avoids multiple representations (leading
zeroes, etc.) See @{text "ZF/Tools/twos-compl.ML"}, function @{text
int_of_binary}, for the numerical interpretation.
The representation expects that @{text "(m mod 2)"} is 0 or 1,
even if m is negative;
For instance, @{text "-5 div 2 = -3"} and @{text "-5 mod 2 = 1"}; thus
@{text "-5 = (-3)*2 + 1"}.
This two's complement binary representation derives from the paper
"An Efficient Representation of Arithmetic for Term Rewriting" by
Dave Cohen and Phil Watson, Rewriting Techniques and Applications,
Springer LNCS 488 (240-251), 1991.
*}
subsubsection {* The constructors @{term Bit0}, @{term Bit1}, @{term Pls} and @{term Min} *}
definition
Pls :: int where
[code del]: "Pls = 0"
definition
Min :: int where
[code del]: "Min = - 1"
definition
Bit0 :: "int \<Rightarrow> int" where
[code del]: "Bit0 k = k + k"
definition
Bit1 :: "int \<Rightarrow> int" where
[code del]: "Bit1 k = 1 + k + k"
class number = -- {* for numeric types: nat, int, real, \dots *}
fixes number_of :: "int \<Rightarrow> 'a"
use "~~/src/HOL/Tools/numeral.ML"
syntax
"_Numeral" :: "num_const \<Rightarrow> 'a" ("_")
use "~~/src/HOL/Tools/numeral_syntax.ML"
setup NumeralSyntax.setup
abbreviation
"Numeral0 \<equiv> number_of Pls"
abbreviation
"Numeral1 \<equiv> number_of (Bit1 Pls)"
lemma Let_number_of [simp]: "Let (number_of v) f = f (number_of v)"
-- {* Unfold all @{text let}s involving constants *}
unfolding Let_def ..
definition
succ :: "int \<Rightarrow> int" where
[code del]: "succ k = k + 1"
definition
pred :: "int \<Rightarrow> int" where
[code del]: "pred k = k - 1"
lemmas
max_number_of [simp] = max_def
[of "number_of u" "number_of v", standard, simp]
and
min_number_of [simp] = min_def
[of "number_of u" "number_of v", standard, simp]
-- {* unfolding @{text minx} and @{text max} on numerals *}
lemmas numeral_simps =
succ_def pred_def Pls_def Min_def Bit0_def Bit1_def
text {* Removal of leading zeroes *}
lemma Bit0_Pls [simp, code_post]:
"Bit0 Pls = Pls"
unfolding numeral_simps by simp
lemma Bit1_Min [simp, code_post]:
"Bit1 Min = Min"
unfolding numeral_simps by simp
lemmas normalize_bin_simps =
Bit0_Pls Bit1_Min