Quot/Quotient.thy
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Mon, 15 Feb 2010 10:11:26 +0100
changeset 1142 b102e1444851
parent 1137 36d596cb63a2
child 1143 84a38acbf512
permissions -rw-r--r--
remove one-line wrapper.

(*  Title:      QuotMain.thy
    Author:     Cezary Kaliszyk and Christian Urban
*)

theory Quotient
imports Plain ATP_Linkup
uses
  ("quotient_info.ML")
  ("quotient_typ.ML")
  ("quotient_def.ML")
  ("quotient_term.ML")
  ("quotient_tacs.ML")
begin


text {*
  Basic definition for equivalence relations
  that are represented by predicates.
*}

definition
  "equivp E \<equiv> \<forall>x y. E x y = (E x = E y)"

definition
  "reflp E \<equiv> \<forall>x. E x x"

definition
  "symp E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x"

definition
  "transp E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z"

lemma equivp_reflp_symp_transp:
  shows "equivp E = (reflp E \<and> symp E \<and> transp E)"
  unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
  by blast

lemma equivp_reflp:
  shows "equivp E \<Longrightarrow> E x x"
  by (simp only: equivp_reflp_symp_transp reflp_def)

lemma equivp_symp:
  shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y x"
  by (metis equivp_reflp_symp_transp symp_def)

lemma equivp_transp:
  shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y z \<Longrightarrow> E x z"
  by (metis equivp_reflp_symp_transp transp_def)

lemma equivpI:
  assumes "reflp R" "symp R" "transp R"
  shows "equivp R"
  using assms by (simp add: equivp_reflp_symp_transp)

lemma identity_equivp:
  shows "equivp (op =)"
  unfolding equivp_def
  by auto

text {* Partial equivalences: not yet used anywhere *}

definition
  "part_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"

lemma equivp_implies_part_equivp:
  assumes a: "equivp E"
  shows "part_equivp E"
  using a
  unfolding equivp_def part_equivp_def
  by auto

text {* Composition of Relations *}

abbreviation
  rel_conj (infixr "OOO" 75)
where
  "r1 OOO r2 \<equiv> r1 OO r2 OO r1"

lemma eq_comp_r:
  shows "((op =) OOO R) = R"
  by (auto simp add: expand_fun_eq)

section {* Respects predicate *}

definition
  Respects
where
  "Respects R x \<equiv> R x x"

lemma in_respects:
  shows "(x \<in> Respects R) = R x x"
  unfolding mem_def Respects_def
  by simp

section {* Function map and function relation *}

definition
  fun_map (infixr "--->" 55)
where
[simp]: "fun_map f g h x = g (h (f x))"

definition
  fun_rel (infixr "===>" 55)
where
[simp]: "fun_rel E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))"


lemma fun_map_id:
  shows "(id ---> id) = id"
  by (simp add: expand_fun_eq id_def)

lemma fun_rel_eq:
  shows "((op =) ===> (op =)) = (op =)"
  by (simp add: expand_fun_eq)

lemma fun_rel_id:
  assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)"
  shows "(R1 ===> R2) f g"
  using a by simp

lemma fun_rel_id_asm:
  assumes a: "\<And>x y. R1 x y \<Longrightarrow> (A \<longrightarrow> R2 (f x) (g y))"
  shows "A \<longrightarrow> (R1 ===> R2) f g"
  using a by auto


section {* Quotient Predicate *}

definition
  "Quotient E Abs Rep \<equiv>
     (\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. E (Rep a) (Rep a)) \<and>
     (\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"

lemma Quotient_abs_rep:
  assumes a: "Quotient E Abs Rep"
  shows "Abs (Rep a) = a"
  using a
  unfolding Quotient_def
  by simp

lemma Quotient_rep_reflp:
  assumes a: "Quotient E Abs Rep"
  shows "E (Rep a) (Rep a)"
  using a
  unfolding Quotient_def
  by blast

lemma Quotient_rel:
  assumes a: "Quotient E Abs Rep"
  shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
  using a
  unfolding Quotient_def
  by blast

lemma Quotient_rel_rep:
  assumes a: "Quotient R Abs Rep"
  shows "R (Rep a) (Rep b) = (a = b)"
  using a
  unfolding Quotient_def
  by metis

lemma Quotient_rep_abs:
  assumes a: "Quotient R Abs Rep"
  shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
  using a unfolding Quotient_def
  by blast

lemma Quotient_rel_abs:
  assumes a: "Quotient E Abs Rep"
  shows "E r s \<Longrightarrow> Abs r = Abs s"
  using a unfolding Quotient_def
  by blast

lemma Quotient_symp:
  assumes a: "Quotient E Abs Rep"
  shows "symp E"
  using a unfolding Quotient_def symp_def
  by metis

lemma Quotient_transp:
  assumes a: "Quotient E Abs Rep"
  shows "transp E"
  using a unfolding Quotient_def transp_def
  by metis

lemma identity_quotient:
  shows "Quotient (op =) id id"
  unfolding Quotient_def id_def
  by blast

lemma fun_quotient:
  assumes q1: "Quotient R1 abs1 rep1"
  and     q2: "Quotient R2 abs2 rep2"
  shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
proof -
  have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
    using q1 q2
    unfolding Quotient_def
    unfolding expand_fun_eq
    by simp
  moreover
  have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
    using q1 q2
    unfolding Quotient_def
    by (simp (no_asm)) (metis)
  moreover
  have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
        (rep1 ---> abs2) r  = (rep1 ---> abs2) s)"
    unfolding expand_fun_eq
    apply(auto)
    using q1 q2 unfolding Quotient_def
    apply(metis)
    using q1 q2 unfolding Quotient_def
    apply(metis)
    using q1 q2 unfolding Quotient_def
    apply(metis)
    using q1 q2 unfolding Quotient_def
    apply(metis)
    done
  ultimately
  show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
    unfolding Quotient_def by blast
qed

lemma abs_o_rep:
  assumes a: "Quotient R Abs Rep"
  shows "Abs o Rep = id"
  unfolding expand_fun_eq
  by (simp add: Quotient_abs_rep[OF a])

lemma equals_rsp:
  assumes q: "Quotient R Abs Rep"
  and     a: "R xa xb" "R ya yb"
  shows "R xa ya = R xb yb"
  using a Quotient_symp[OF q] Quotient_transp[OF q]
  unfolding symp_def transp_def
  by blast

lemma lambda_prs:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
  unfolding expand_fun_eq
  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
  by simp

lemma lambda_prs1:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
  unfolding expand_fun_eq
  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
  by simp

lemma rep_abs_rsp:
  assumes q: "Quotient R Abs Rep"
  and     a: "R x1 x2"
  shows "R x1 (Rep (Abs x2))"
  using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
  by metis

lemma rep_abs_rsp_left:
  assumes q: "Quotient R Abs Rep"
  and     a: "R x1 x2"
  shows "R (Rep (Abs x1)) x2"
  using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
  by metis

text{*
  In the following theorem R1 can be instantiated with anything,
  but we know some of the types of the Rep and Abs functions;
  so by solving Quotient assumptions we can get a unique R1 that
  will be provable; which is why we need to use apply_rsp and
  not the primed version *}

lemma apply_rsp:
  fixes f g::"'a \<Rightarrow> 'c"
  assumes q: "Quotient R1 Abs1 Rep1"
  and     a: "(R1 ===> R2) f g" "R1 x y"
  shows "R2 (f x) (g y)"
  using a by simp

lemma apply_rsp':
  assumes a: "(R1 ===> R2) f g" "R1 x y"
  shows "R2 (f x) (g y)"
  using a by simp

section {* lemmas for regularisation of ball and bex *}

lemma ball_reg_eqv:
  fixes P :: "'a \<Rightarrow> bool"
  assumes a: "equivp R"
  shows "Ball (Respects R) P = (All P)"
  using a
  unfolding equivp_def
  by (auto simp add: in_respects)

lemma bex_reg_eqv:
  fixes P :: "'a \<Rightarrow> bool"
  assumes a: "equivp R"
  shows "Bex (Respects R) P = (Ex P)"
  using a
  unfolding equivp_def
  by (auto simp add: in_respects)

lemma ball_reg_right:
  assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x"
  shows "All P \<longrightarrow> Ball R Q"
  using a by (metis COMBC_def Collect_def Collect_mem_eq)

lemma bex_reg_left:
  assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x"
  shows "Bex R Q \<longrightarrow> Ex P"
  using a by (metis COMBC_def Collect_def Collect_mem_eq)

lemma ball_reg_left:
  assumes a: "equivp R"
  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
  using a by (metis equivp_reflp in_respects)

lemma bex_reg_right:
  assumes a: "equivp R"
  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
  using a by (metis equivp_reflp in_respects)

lemma ball_reg_eqv_range:
  fixes P::"'a \<Rightarrow> bool"
  and x::"'a"
  assumes a: "equivp R2"
  shows   "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
  apply(rule iffI)
  apply(rule allI)
  apply(drule_tac x="\<lambda>y. f x" in bspec)
  apply(simp add: in_respects)
  apply(rule impI)
  using a equivp_reflp_symp_transp[of "R2"]
  apply(simp add: reflp_def)
  apply(simp)
  apply(simp)
  done

lemma bex_reg_eqv_range:
  assumes a: "equivp R2"
  shows   "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
  apply(auto)
  apply(rule_tac x="\<lambda>y. f x" in bexI)
  apply(simp)
  apply(simp add: Respects_def in_respects)
  apply(rule impI)
  using a equivp_reflp_symp_transp[of "R2"]
  apply(simp add: reflp_def)
  done

(* Next four lemmas are unused *)
lemma all_reg:
  assumes a: "!x :: 'a. (P x --> Q x)"
  and     b: "All P"
  shows "All Q"
  using a b by (metis)

lemma ex_reg:
  assumes a: "!x :: 'a. (P x --> Q x)"
  and     b: "Ex P"
  shows "Ex Q"
  using a b by metis

lemma ball_reg:
  assumes a: "!x :: 'a. (R x --> P x --> Q x)"
  and     b: "Ball R P"
  shows "Ball R Q"
  using a b by (metis COMBC_def Collect_def Collect_mem_eq)

lemma bex_reg:
  assumes a: "!x :: 'a. (R x --> P x --> Q x)"
  and     b: "Bex R P"
  shows "Bex R Q"
  using a b by (metis COMBC_def Collect_def Collect_mem_eq)


lemma ball_all_comm:
  assumes "\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)"
  shows "(\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y)"
  using assms by auto

lemma bex_ex_comm:
  assumes "(\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)"
  shows "(\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y)"
  using assms by auto

section {* Bounded abstraction *}

definition
  Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
where
  "x \<in> p \<Longrightarrow> Babs p m x = m x"

lemma babs_rsp:
  assumes q: "Quotient R1 Abs1 Rep1"
  and     a: "(R1 ===> R2) f g"
  shows      "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"
  apply (auto simp add: Babs_def in_respects)
  apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
  using a apply (simp add: Babs_def)
  apply (simp add: in_respects)
  using Quotient_rel[OF q]
  by metis

lemma babs_prs:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f"
  apply (rule ext)
  apply (simp)
  apply (subgoal_tac "Rep1 x \<in> Respects R1")
  apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
  apply (simp add: in_respects Quotient_rel_rep[OF q1])
  done

lemma babs_simp:
  assumes q: "Quotient R1 Abs Rep"
  shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)"
  apply(rule iffI)
  apply(simp_all only: babs_rsp[OF q])
  apply(auto simp add: Babs_def)
  apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
  apply(metis Babs_def)
  apply (simp add: in_respects)
  using Quotient_rel[OF q]
  by metis

(* If a user proves that a particular functional relation
   is an equivalence this may be useful in regularising *)
lemma babs_reg_eqv:
  shows "equivp R \<Longrightarrow> Babs (Respects R) P = P"
  by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp)


(* 3 lemmas needed for proving repabs_inj *)
lemma ball_rsp:
  assumes a: "(R ===> (op =)) f g"
  shows "Ball (Respects R) f = Ball (Respects R) g"
  using a by (simp add: Ball_def in_respects)

lemma bex_rsp:
  assumes a: "(R ===> (op =)) f g"
  shows "(Bex (Respects R) f = Bex (Respects R) g)"
  using a by (simp add: Bex_def in_respects)

lemma bex1_rsp:
  assumes a: "(R ===> (op =)) f g"
  shows "Ex1 (\<lambda>x. x \<in> Respects R \<and> f x) = Ex1 (\<lambda>x. x \<in> Respects R \<and> g x)"
  using a
  by (simp add: Ex1_def in_respects) auto

(* 2 lemmas needed for cleaning of quantifiers *)
lemma all_prs:
  assumes a: "Quotient R absf repf"
  shows "Ball (Respects R) ((absf ---> id) f) = All f"
  using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply
  by metis

lemma ex_prs:
  assumes a: "Quotient R absf repf"
  shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
  using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply
  by metis

section {* Bex1_rel quantifier *}

definition
  Bex1_rel :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
where
  "Bex1_rel R P \<longleftrightarrow> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))"

lemma bex1_rel_aux:
  "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R x\<rbrakk> \<Longrightarrow> Bex1_rel R y"
  unfolding Bex1_rel_def
  apply (erule conjE)+
  apply (erule bexE)
  apply rule
  apply (rule_tac x="xa" in bexI)
  apply metis
  apply metis
  apply rule+
  apply (erule_tac x="xaa" in ballE)
  prefer 2
  apply (metis)
  apply (erule_tac x="ya" in ballE)
  prefer 2
  apply (metis)
  apply (metis in_respects)
  done

lemma bex1_rel_aux2:
  "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R y\<rbrakk> \<Longrightarrow> Bex1_rel R x"
  unfolding Bex1_rel_def
  apply (erule conjE)+
  apply (erule bexE)
  apply rule
  apply (rule_tac x="xa" in bexI)
  apply metis
  apply metis
  apply rule+
  apply (erule_tac x="xaa" in ballE)
  prefer 2
  apply (metis)
  apply (erule_tac x="ya" in ballE)
  prefer 2
  apply (metis)
  apply (metis in_respects)
  done

lemma bex1_rel_rsp:
  assumes a: "Quotient R absf repf"
  shows "((R ===> op =) ===> op =) (Bex1_rel R) (Bex1_rel R)"
  apply simp
  apply clarify
  apply rule
  apply (simp_all add: bex1_rel_aux bex1_rel_aux2)
  apply (erule bex1_rel_aux2)
  apply assumption
  done


lemma ex1_prs:
  assumes a: "Quotient R absf repf"
  shows "((absf ---> id) ---> id) (Bex1_rel R) f = Ex1 f"
apply simp
apply (subst Bex1_rel_def)
apply (subst Bex_def)
apply (subst Ex1_def)
apply simp
apply rule
 apply (erule conjE)+
 apply (erule_tac exE)
 apply (erule conjE)
 apply (subgoal_tac "\<forall>y. R y y \<longrightarrow> f (absf y) \<longrightarrow> R x y")
  apply (rule_tac x="absf x" in exI)
  apply (simp)
  apply rule+
  using a unfolding Quotient_def
  apply metis
 apply rule+
 apply (erule_tac x="x" in ballE)
  apply (erule_tac x="y" in ballE)
   apply simp
  apply (simp add: in_respects)
 apply (simp add: in_respects)
apply (erule_tac exE)
 apply rule
 apply (rule_tac x="repf x" in exI)
 apply (simp only: in_respects)
  apply rule
 apply (metis Quotient_rel_rep[OF a])
using a unfolding Quotient_def apply (simp)
apply rule+
using a unfolding Quotient_def in_respects
apply metis
done

lemma bex1_bexeq_reg: "(\<exists>!x\<in>Respects R. P x) \<longrightarrow> (Bex1_rel R (\<lambda>x. P x))"
  apply (simp add: Ex1_def Bex1_rel_def in_respects)
  apply clarify
  apply auto
  apply (rule bexI)
  apply assumption
  apply (simp add: in_respects)
  apply (simp add: in_respects)
  apply auto
  done

section {* Various respects and preserve lemmas *}

lemma quot_rel_rsp:
  assumes a: "Quotient R Abs Rep"
  shows "(R ===> R ===> op =) R R"
  apply(rule fun_rel_id)+
  apply(rule equals_rsp[OF a])
  apply(assumption)+
  done

lemma o_prs:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  and     q3: "Quotient R3 Abs3 Rep3"
  shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g"
  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
  unfolding o_def expand_fun_eq by simp

lemma o_rsp:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  and     q3: "Quotient R3 Abs3 Rep3"
  and     a1: "(R2 ===> R3) f1 f2"
  and     a2: "(R1 ===> R2) g1 g2"
  shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
  using a1 a2 unfolding o_def expand_fun_eq
  by (auto)

lemma cond_prs:
  assumes a: "Quotient R absf repf"
  shows "absf (if a then repf b else repf c) = (if a then b else c)"
  using a unfolding Quotient_def by auto

lemma if_prs:
  assumes q: "Quotient R Abs Rep"
  shows "Abs (If a (Rep b) (Rep c)) = If a b c"
  using Quotient_abs_rep[OF q] by auto

(* q not used *)
lemma if_rsp:
  assumes q: "Quotient R Abs Rep"
  and     a: "a1 = a2" "R b1 b2" "R c1 c2"
  shows "R (If a1 b1 c1) (If a2 b2 c2)"
  using a by auto

lemma let_prs:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     q2: "Quotient R2 Abs2 Rep2"
  shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f"
  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto

lemma let_rsp:
  assumes q1: "Quotient R1 Abs1 Rep1"
  and     a1: "(R1 ===> R2) f g"
  and     a2: "R1 x y"
  shows "R2 ((Let x f)::'c) ((Let y g)::'c)"
  using apply_rsp[OF q1 a1] a2 by auto

locale quot_type =
  fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
  and   Abs :: "('a \<Rightarrow> bool) \<Rightarrow> 'b"
  and   Rep :: "'b \<Rightarrow> ('a \<Rightarrow> bool)"
  assumes equivp: "equivp R"
  and     rep_prop: "\<And>y. \<exists>x. Rep y = R x"
  and     rep_inverse: "\<And>x. Abs (Rep x) = x"
  and     abs_inverse: "\<And>x. (Rep (Abs (R x))) = (R x)"
  and     rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)"
begin

definition
  abs::"'a \<Rightarrow> 'b"
where
  "abs x \<equiv> Abs (R x)"

definition
  rep::"'b \<Rightarrow> 'a"
where
  "rep a = Eps (Rep a)"

lemma homeier_lem9:
  shows "R (Eps (R x)) = R x"
proof -
  have a: "R x x" using equivp by (simp add: equivp_reflp_symp_transp reflp_def)
  then have "R x (Eps (R x))" by (rule someI)
  then show "R (Eps (R x)) = R x"
    using equivp unfolding equivp_def by simp
qed

theorem homeier_thm10:
  shows "abs (rep a) = a"
  unfolding abs_def rep_def
proof -
  from rep_prop
  obtain x where eq: "Rep a = R x" by auto
  have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp
  also have "\<dots> = Abs (R x)" using homeier_lem9 by simp
  also have "\<dots> = Abs (Rep a)" using eq by simp
  also have "\<dots> = a" using rep_inverse by simp
  finally
  show "Abs (R (Eps (Rep a))) = a" by simp
qed

lemma homeier_lem7:
  shows "(R x = R y) = (Abs (R x) = Abs (R y))" (is "?LHS = ?RHS")
proof -
  have "?RHS = (Rep (Abs (R x)) = Rep (Abs (R y)))" by (simp add: rep_inject)
  also have "\<dots> = ?LHS" by (simp add: abs_inverse)
  finally show "?LHS = ?RHS" by simp
qed

theorem homeier_thm11:
  shows "R r r' = (abs r = abs r')"
  unfolding abs_def
  by (simp only: equivp[simplified equivp_def] homeier_lem7)

lemma rep_refl:
  shows "R (rep a) (rep a)"
  unfolding rep_def
  by (simp add: equivp[simplified equivp_def])


lemma rep_abs_rsp:
  shows "R f (rep (abs g)) = R f g"
  and   "R (rep (abs g)) f = R g f"
  by (simp_all add: homeier_thm10 homeier_thm11)

lemma Quotient:
  shows "Quotient R abs rep"
  unfolding Quotient_def
  apply(simp add: homeier_thm10)
  apply(simp add: rep_refl)
  apply(subst homeier_thm11[symmetric])
  apply(simp add: equivp[simplified equivp_def])
  done

end

section {* ML setup *}

text {* Auxiliary data for the quotient package *}

use "quotient_info.ML"

declare [[map "fun" = (fun_map, fun_rel)]]

lemmas [quot_thm] = fun_quotient
lemmas [quot_respect] = quot_rel_rsp
lemmas [quot_equiv] = identity_equivp


text {* Lemmas about simplifying id's. *}
lemmas [id_simps] =
  id_def[symmetric]
  fun_map_id
  id_apply
  id_o
  o_id
  eq_comp_r

text {* Translation functions for the lifting process. *}
use "quotient_term.ML"


text {* Definitions of the quotient types. *}
use "quotient_typ.ML"


text {* Definitions for quotient constants. *}
use "quotient_def.ML"


text {*
  An auxiliary constant for recording some information
  about the lifted theorem in a tactic.
*}
definition
  "Quot_True x \<equiv> True"

lemma
  shows QT_all: "Quot_True (All P) \<Longrightarrow> Quot_True P"
  and   QT_ex:  "Quot_True (Ex P) \<Longrightarrow> Quot_True P"
  and   QT_ex1: "Quot_True (Ex1 P) \<Longrightarrow> Quot_True P"
  and   QT_lam: "Quot_True (\<lambda>x. P x) \<Longrightarrow> (\<And>x. Quot_True (P x))"
  and   QT_ext: "(\<And>x. Quot_True (a x) \<Longrightarrow> f x = g x) \<Longrightarrow> (Quot_True a \<Longrightarrow> f = g)"
  by (simp_all add: Quot_True_def ext)

lemma QT_imp: "Quot_True a \<equiv> Quot_True b"
  by (simp add: Quot_True_def)


text {* Tactics for proving the lifted theorems *}
use "quotient_tacs.ML"

section {* Methods / Interface *}

(* TODO inline *)
ML {*
fun mk_method1 tac thms ctxt =
  SIMPLE_METHOD (HEADGOAL (tac ctxt thms))

fun mk_method2 tac ctxt =
  SIMPLE_METHOD (HEADGOAL (tac ctxt))
*}

method_setup lifting =
  {* Attrib.thms >> (mk_method1 Quotient_Tacs.lift_tac) *}
  {* lifts theorems to quotient types *}

method_setup lifting_setup =
  {* Attrib.thm >> (mk_method1 Quotient_Tacs.procedure_tac) *}
  {* sets up the three goals for the quotient lifting procedure *}

method_setup regularize =
  {* Scan.succeed (mk_method2 Quotient_Tacs.regularize_tac) *}
  {* proves the regularization goals from the quotient lifting procedure *}

method_setup injection =
  {* Scan.succeed (mk_method2 Quotient_Tacs.all_injection_tac) *}
  {* proves the rep/abs injection goals from the quotient lifting procedure *}

method_setup cleaning =
  {* Scan.succeed (mk_method2 Quotient_Tacs.clean_tac) *}
  {* proves the cleaning goals from the quotient lifting procedure *}

attribute_setup quot_lifted =
  {* Scan.succeed Quotient_Tacs.lifted_attrib *}
  {* lifts theorems to quotient types *}

no_notation
  rel_conj (infixr "OOO" 75) and
  fun_map (infixr "--->" 55) and
  fun_rel (infixr "===>" 55)

end