theory TySch
imports "Parser" "../Attic/Prove" "FSet"
begin
atom_decl name
nominal_datatype t =
Var "name"
| Fun "t" "t"
and tyS =
All xs::"name fset" ty::"t" bind xs in ty
lemma size_eqvt_raw:
"size (pi \<bullet> t :: t_raw) = size t"
"size (pi \<bullet> ts :: tyS_raw) = size ts"
apply (induct rule: t_raw_tyS_raw.inducts)
apply simp_all
done
instantiation t and tyS :: size begin
quotient_definition
"size_t :: t \<Rightarrow> nat"
is
"size :: t_raw \<Rightarrow> nat"
quotient_definition
"size_tyS :: tyS \<Rightarrow> nat"
is
"size :: tyS_raw \<Rightarrow> nat"
lemma size_rsp:
"alpha_t_raw x y \<Longrightarrow> size x = size y"
"alpha_tyS_raw a b \<Longrightarrow> size a = size b"
apply (induct rule: alpha_t_raw_alpha_tyS_raw.inducts)
apply (simp_all only: t_raw_tyS_raw.size)
apply (simp_all only: alpha_gen)
apply clarify
apply (simp_all only: size_eqvt_raw)
done
lemma [quot_respect]:
"(alpha_t_raw ===> op =) size size"
"(alpha_tyS_raw ===> op =) size size"
by (simp_all add: size_rsp)
lemma [quot_preserve]:
"(rep_t ---> id) size = size"
"(rep_tyS ---> id) size = size"
by (simp_all add: size_t_def size_tyS_def)
instance
by default
end
thm t_raw_tyS_raw.size(4)[quot_lifted]
thm t_raw_tyS_raw.size(5)[quot_lifted]
thm t_raw_tyS_raw.size(6)[quot_lifted]
thm t_tyS.fv
thm t_tyS.eq_iff
thm t_tyS.bn
thm t_tyS.perm
thm t_tyS.inducts
thm t_tyS.distinct
ML {* Sign.of_sort @{theory} (@{typ t}, @{sort fs}) *}
lemmas t_tyS_supp = t_tyS.fv[simplified t_tyS.supp]
lemma induct:
assumes a1: "\<And>name b. P b (Var name)"
and a2: "\<And>t1 t2 b. \<lbrakk>\<And>c. P c t1; \<And>c. P c t2\<rbrakk> \<Longrightarrow> P b (Fun t1 t2)"
and a3: "\<And>fset t b. \<lbrakk>\<And>c. P c t; fset_to_set (fmap atom fset) \<sharp>* b\<rbrakk> \<Longrightarrow> P' b (All fset t)"
shows "P (a :: 'a :: pt) t \<and> P' (d :: 'b :: {fs}) ts "
proof -
have " (\<forall>p a. P a (p \<bullet> t)) \<and> (\<forall>p d. P' d (p \<bullet> ts))"
apply (rule t_tyS.induct)
apply (simp add: a1)
apply (simp)
apply (rule allI)+
apply (rule a2)
apply simp
apply simp
apply (rule allI)
apply (rule allI)
apply(subgoal_tac "\<exists>pa. ((pa \<bullet> (fset_to_set (fmap atom (p \<bullet> fset)))) \<sharp>* d \<and> supp (p \<bullet> TySch.All fset t) \<sharp>* pa)")
apply clarify
apply(rule_tac t="p \<bullet> TySch.All fset t" and
s="pa \<bullet> (p \<bullet> TySch.All fset t)" in subst)
apply (rule supp_perm_eq)
apply assumption
apply (simp only: t_tyS.perm)
apply (rule a3)
apply(erule_tac x="(pa + p)" in allE)
apply simp
apply (simp add: eqvts eqvts_raw)
apply (rule at_set_avoiding2)
apply (simp add: fin_fset_to_set)
apply (simp add: finite_supp)
apply (simp add: eqvts finite_supp)
apply (subst atom_eqvt_raw[symmetric])
apply (subst fmap_eqvt[symmetric])
apply (subst fset_to_set_eqvt[symmetric])
apply (simp only: fresh_star_permute_iff)
apply (simp add: fresh_star_def)
apply clarify
apply (simp add: fresh_def)
apply (simp add: t_tyS_supp)
done
then have "P a (0 \<bullet> t) \<and> P' d (0 \<bullet> ts)" by blast
then show ?thesis by simp
qed
lemma
shows "All {|a, b|} (Fun (Var a) (Var b)) = All {|b, a|} (Fun (Var a) (Var b))"
apply(simp add: t_tyS.eq_iff)
apply(rule_tac x="0::perm" in exI)
apply(simp add: alpha_gen)
apply(auto)
apply(simp add: fresh_star_def fresh_zero_perm)
done
lemma
shows "All {|a, b|} (Fun (Var a) (Var b)) = All {|a, b|} (Fun (Var b) (Var a))"
apply(simp add: t_tyS.eq_iff)
apply(rule_tac x="(atom a \<rightleftharpoons> atom b)" in exI)
apply(simp add: alpha_gen fresh_star_def eqvts)
apply auto
done
lemma
shows "All {|a, b, c|} (Fun (Var a) (Var b)) = All {|a, b|} (Fun (Var a) (Var b))"
apply(simp add: t_tyS.eq_iff)
apply(rule_tac x="0::perm" in exI)
apply(simp add: alpha_gen fresh_star_def eqvts t_tyS.eq_iff)
oops
lemma
assumes a: "a \<noteq> b"
shows "\<not>(All {|a, b|} (Fun (Var a) (Var b)) = All {|c|} (Fun (Var c) (Var c)))"
using a
apply(simp add: t_tyS.eq_iff)
apply(clarify)
apply(simp add: alpha_gen fresh_star_def eqvts t_tyS.eq_iff)
apply auto
done
end