(* Title: nominal_thmdecls.ML
Author: Christian Urban
Infrastructure for the lemma collection "eqvts".
Provides the attributes [eqvt] and [eqvt_raw], and the theorem
lists eqvts and eqvts_raw. The first attribute will store the
theorem in the eqvts list and also in the eqvts_raw list. For
the latter the theorem is expected to be of the form
p o (c x1 x2 ...) = c (p o x1) (p o x2) ... (1)
or
c x1 x2 ... ==> c (p o x1) (p o x2) ... (2)
and it is stored in the form
p o c == c
The [eqvt_raw] attribute just adds the theorem to eqvts_raw.
TODO: In case of the form in (2) one should also
add the equational form to eqvts
*)
signature NOMINAL_THMDECLS =
sig
val eqvt_add: attribute
val eqvt_del: attribute
val eqvt_raw_add: attribute
val eqvt_raw_del: attribute
val setup: theory -> theory
val get_eqvts_thms: Proof.context -> thm list
val get_eqvts_raw_thms: Proof.context -> thm list
end;
structure Nominal_ThmDecls: NOMINAL_THMDECLS =
struct
structure EqvtData = Generic_Data
( type T = thm Item_Net.T;
val empty = Thm.full_rules;
val extend = I;
val merge = Item_Net.merge );
structure EqvtRawData = Generic_Data
( type T = thm Item_Net.T;
val empty = Thm.full_rules;
val extend = I;
val merge = Item_Net.merge );
val eqvts = Item_Net.content o EqvtData.get;
val eqvts_raw = Item_Net.content o EqvtRawData.get;
val get_eqvts_thms = eqvts o Context.Proof;
val get_eqvts_raw_thms = eqvts_raw o Context.Proof;
val add_thm = EqvtData.map o Item_Net.update;
val del_thm = EqvtData.map o Item_Net.remove;
fun is_equiv (Const ("==", _) $ _ $ _) = true
| is_equiv _ = false
fun add_raw_thm thm =
case prop_of thm of
Const ("==", _) $ _ $ _ => EqvtRawData.map (Item_Net.update thm)
| _ => raise THM ("Theorem must be a meta-equality", 0, [thm])
val del_raw_thm = EqvtRawData.map o Item_Net.remove;
fun dest_perm (Const (@{const_name "permute"}, _) $ p $ t) = (p, t)
| dest_perm t = raise TERM ("dest_perm", [t])
fun mk_perm p trm =
let
val ty = fastype_of trm
in
Const (@{const_name "permute"}, @{typ "perm"} --> ty --> ty) $ p $ trm
end
fun eq_transform_tac thm = REPEAT o FIRST'
[CHANGED o simp_tac (HOL_basic_ss addsimps @{thms permute_minus_cancel}),
rtac (thm RS @{thm trans}),
rtac @{thm trans[OF permute_fun_def]} THEN' rtac @{thm ext}]
(* transform equations into the "p o c = c"-form *)
fun transform_eq ctxt thm =
let
val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop (prop_of thm))
val (p, t) = dest_perm lhs
val (c, args) = strip_comb t
val (c', args') = strip_comb rhs
val eargs = map Envir.eta_contract args
val eargs' = map Envir.eta_contract args'
val p_str = fst (fst (dest_Var p))
val goal = HOLogic.mk_Trueprop (HOLogic.mk_eq (mk_perm p c, c))
in
if c <> c'
then error "Eqvt lemma is not of the right form (constants do not agree)"
else if eargs' <> map (mk_perm p) eargs
then error "Eqvt lemma is not of the right form (arguments do not agree)"
else if args = []
then thm
else Goal.prove ctxt [p_str] [] goal
(fn _ => eq_transform_tac thm 1)
end
(* tests whether the lists of pis all agree, and that there is at least one p *)
fun is_bad_list [] = true
| is_bad_list [_] = false
| is_bad_list (p::q::ps) = if p = q then is_bad_list (q::ps) else true
fun mk_minus p =
Const (@{const_name "uminus"}, @{typ "perm => perm"}) $ p
fun imp_transform_tac thy p p' thm =
let
val cp = Thm.cterm_of thy p
val cp' = Thm.cterm_of thy (mk_minus p')
val thm' = Drule.cterm_instantiate [(cp, cp')] thm
val simp = HOL_basic_ss addsimps @{thms permute_minus_cancel(2)}
in
EVERY' [rtac @{thm iffI}, dtac @{thm permute_boolE}, rtac thm, atac,
rtac @{thm permute_boolI}, dtac thm', full_simp_tac simp]
end
fun transform_imp ctxt thm =
let
val thy = ProofContext.theory_of ctxt
val (prem, concl) = pairself HOLogic.dest_Trueprop (Logic.dest_implies (prop_of thm))
val (c, prem_args) = strip_comb prem
val (c', concl_args) = strip_comb concl
val ps = map (fst o dest_perm) concl_args handle TERM _ => []
val p = try hd ps
in
if c <> c'
then error "Eqvt lemma is not of the right form (constants do not agree)"
else if is_bad_list ps
then error "Eqvt lemma is not of the right form (permutations do not agree)"
else if concl_args <> map (mk_perm (the p)) prem_args
then error "Eqvt lemma is not of the right form (arguments do not agree)"
else
let
val prem' = Const (@{const_name "permute"}, @{typ "perm => bool => bool"}) $ (the p) $ prem
val goal = HOLogic.mk_Trueprop (HOLogic.mk_eq (prem', concl))
val ([goal', p'], ctxt') = Variable.import_terms false [goal, the p] ctxt
in
Goal.prove ctxt' [] [] goal'
(fn _ => imp_transform_tac thy (the p) p' thm 1)
|> singleton (ProofContext.export ctxt' ctxt)
|> transform_eq ctxt
end
end
fun mk_equiv r = r RS @{thm eq_reflection};
fun safe_mk_equiv r = mk_equiv r handle Thm.THM _ => r;
fun transform addel_fun thm context =
let
val ctxt = Context.proof_of context
in
case (prop_of thm) of
@{const "Trueprop"} $ (Const (@{const_name "op ="}, _) $
(Const (@{const_name "permute"}, _) $ _ $ _) $ _) =>
addel_fun (safe_mk_equiv (transform_eq ctxt thm)) context
| @{const "==>"} $ (@{const "Trueprop"} $ _) $ (@{const "Trueprop"} $ _) =>
addel_fun (safe_mk_equiv (transform_imp ctxt thm)) context
| _ => raise error "Only _ = _ and _ ==> _ cases are implemented."
end
val eqvt_add = Thm.declaration_attribute (fn thm => (add_thm thm) o (transform add_raw_thm thm));
val eqvt_del = Thm.declaration_attribute (fn thm => (del_thm thm) o (transform del_raw_thm thm));
val eqvt_raw_add = Thm.declaration_attribute add_raw_thm;
val eqvt_raw_del = Thm.declaration_attribute del_raw_thm;
val setup =
Attrib.setup @{binding "eqvt"} (Attrib.add_del eqvt_add eqvt_del)
(cat_lines ["Declaration of equivariance lemmas - they will automtically be",
"brought into the form p o c == c"]) #>
Attrib.setup @{binding "eqvt_raw"} (Attrib.add_del eqvt_raw_add eqvt_raw_del)
(cat_lines ["Declaration of equivariance lemmas - no",
"transformation is performed"]) #>
PureThy.add_thms_dynamic (@{binding "eqvts"}, eqvts) #>
PureThy.add_thms_dynamic (@{binding "eqvts_raw"}, eqvts_raw);
end;