theory QuotSum
imports QuotMain
begin
fun
sum_rel
where
"sum_rel R1 R2 (Inl a1) (Inl b1) = R1 a1 b1"
| "sum_rel R1 R2 (Inl a1) (Inr b2) = False"
| "sum_rel R1 R2 (Inr a2) (Inl b1) = False"
| "sum_rel R1 R2 (Inr a2) (Inr b2) = R2 a2 b2"
fun
sum_map
where
"sum_map f1 f2 (Inl a) = Inl (f1 a)"
| "sum_map f1 f2 (Inr a) = Inr (f2 a)"
declare [[map * = (sum_map, sum_rel)]]
lemma sum_equivp[quot_equiv]:
assumes a: "equivp R1"
assumes b: "equivp R2"
shows "equivp (sum_rel R1 R2)"
unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def
apply(auto)
apply(case_tac x)
apply(auto simp add: equivp_reflp[OF a] equivp_reflp[OF b])
apply(case_tac x)
apply(case_tac y)
prefer 3
apply(case_tac y)
apply(auto simp add: equivp_symp[OF a] equivp_symp[OF b])
apply(case_tac x)
apply(case_tac y)
apply(case_tac z)
prefer 3
apply(case_tac z)
prefer 5
apply(case_tac y)
apply(case_tac z)
prefer 3
apply(case_tac z)
apply(auto)
apply(metis equivp_transp[OF b])
apply(metis equivp_transp[OF a])
done
lemma sum_fun_fun:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "sum_rel R1 R2 r s =
(sum_rel R1 R2 r r \<and> sum_rel R1 R2 s s \<and> sum_map Abs1 Abs2 r = sum_map Abs1 Abs2 s)"
using q1 q2
apply(case_tac r)
apply(case_tac s)
apply(simp_all)
prefer 2
apply(case_tac s)
apply(auto)
unfolding Quotient_def
apply metis+
done
lemma sum_quotient[quot_thm]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "Quotient (sum_rel R1 R2) (sum_map Abs1 Abs2) (sum_map Rep1 Rep2)"
unfolding Quotient_def
apply(rule conjI)
apply(rule allI)
apply(case_tac a)
apply(simp add: Quotient_abs_rep[OF q1])
apply(simp add: Quotient_abs_rep[OF q2])
apply(rule conjI)
apply(rule allI)
apply(case_tac a)
apply(simp add: Quotient_rel_rep[OF q1])
apply(simp add: Quotient_rel_rep[OF q2])
apply(rule allI)+
apply(rule sum_fun_fun[OF q1 q2])
done
end