Quot/Examples/FSet.thy
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Wed, 24 Feb 2010 18:38:49 +0100
changeset 1255 ab8ed83d0188
parent 1140 aaeb5a34d21a
permissions -rw-r--r--
Simplified and finised eqvt proofs for t1 and t5

theory FSet
imports "../Quotient" "../Quotient_List" "../Quotient_Product" List
begin

inductive
  list_eq (infix "\<approx>" 50)
where
  "a#b#xs \<approx> b#a#xs"
| "[] \<approx> []"
| "xs \<approx> ys \<Longrightarrow> ys \<approx> xs"
| "a#a#xs \<approx> a#xs"
| "xs \<approx> ys \<Longrightarrow> a#xs \<approx> a#ys"
| "\<lbrakk>xs1 \<approx> xs2; xs2 \<approx> xs3\<rbrakk> \<Longrightarrow> xs1 \<approx> xs3"

lemma list_eq_refl:
  shows "xs \<approx> xs"
  by (induct xs) (auto intro: list_eq.intros)

lemma equivp_list_eq:
  shows "equivp list_eq"
  unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def
  apply(auto intro: list_eq.intros list_eq_refl)
  done

quotient_type 
  'a fset = "'a list" / "list_eq"
  by (rule equivp_list_eq)

quotient_definition
   "EMPTY :: 'a fset"
is
  "[]::'a list"

quotient_definition
   "INSERT :: 'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is
  "op #"

quotient_definition
   "FUNION :: 'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is
  "op @"

fun
  card1 :: "'a list \<Rightarrow> nat"
where
  card1_nil: "(card1 []) = 0"
| card1_cons: "(card1 (x # xs)) = (if (x mem xs) then (card1 xs) else (Suc (card1 xs)))"

quotient_definition
   "CARD :: 'a fset \<Rightarrow> nat"
is
  "card1"

quotient_definition
  "fconcat :: ('a fset) fset \<Rightarrow> 'a fset"
is
  "concat"

term concat
term fconcat

text {*
 Maybe make_const_def should require a theorem that says that the particular lifted function
 respects the relation. With it such a definition would be impossible:
 make_const_def CARD @{term "length"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}

lemma card1_0:
  fixes a :: "'a list"
  shows "(card1 a = 0) = (a = [])"
  by (induct a) auto

lemma not_mem_card1:
  fixes x :: "'a"
  fixes xs :: "'a list"
  shows "(~(x mem xs)) = (card1 (x # xs) = Suc (card1 xs))"
  by auto

lemma mem_cons:
  fixes x :: "'a"
  fixes xs :: "'a list"
  assumes a : "x mem xs"
  shows "x # xs \<approx> xs"
  using a by (induct xs) (auto intro: list_eq.intros )

lemma card1_suc:
  fixes xs :: "'a list"
  fixes n :: "nat"
  assumes c: "card1 xs = Suc n"
  shows "\<exists>a ys. ~(a mem ys) \<and> xs \<approx> (a # ys)"
  using c
apply(induct xs)
apply (metis Suc_neq_Zero card1_0)
apply (metis FSet.card1_cons list_eq.intros(6) list_eq_refl mem_cons)
done

definition
  rsp_fold
where
  "rsp_fold f = ((!u v. (f u v = f v u)) \<and> (!u v w. ((f u (f v w) = f (f u v) w))))"

primrec
  fold1
where
  "fold1 f (g :: 'a \<Rightarrow> 'b) (z :: 'b) [] = z"
| "fold1 f g z (a # A) =
     (if rsp_fold f
     then (
       if (a mem A) then (fold1 f g z A) else (f (g a) (fold1 f g z A))
     ) else z)"

lemma fs1_strong_cases:
  fixes X :: "'a list"
  shows "(X = []) \<or> (\<exists>a. \<exists> Y. (~(a mem Y) \<and> (X \<approx> a # Y)))"
  apply (induct X)
  apply (simp)
  apply (metis List.member.simps(1) list_eq.intros(6) list_eq_refl mem_cons)
  done

quotient_definition
   "IN :: 'a \<Rightarrow> 'a fset \<Rightarrow> bool"
is
  "op mem"

quotient_definition
   "FOLD :: ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b fset \<Rightarrow> 'a"
is
  "fold1"

quotient_definition
  "fmap :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset"
is
  "map"

lemma mem_rsp:
  fixes z
  assumes a: "x \<approx> y"
  shows "(z mem x) = (z mem y)"
  using a by induct auto

lemma ho_memb_rsp[quot_respect]:
  "(op = ===> (op \<approx> ===> op =)) (op mem) (op mem)"
  by (simp add: mem_rsp)

lemma card1_rsp:
  fixes a b :: "'a list"
  assumes e: "a \<approx> b"
  shows "card1 a = card1 b"
  using e by induct (simp_all add: mem_rsp)

lemma ho_card1_rsp[quot_respect]: 
  "(op \<approx> ===> op =) card1 card1"
  by (simp add: card1_rsp)

lemma cons_rsp:
  fixes z
  assumes a: "xs \<approx> ys"
  shows "(z # xs) \<approx> (z # ys)"
  using a by (rule list_eq.intros(5))

lemma ho_cons_rsp[quot_respect]:
  "(op = ===> op \<approx> ===> op \<approx>) op # op #"
  by (simp add: cons_rsp)

lemma append_rsp_aux1:
  assumes a : "l2 \<approx> r2 "
  shows "(h @ l2) \<approx> (h @ r2)"
using a
apply(induct h)
apply(auto intro: list_eq.intros(5))
done

lemma append_rsp_aux2:
  assumes a : "l1 \<approx> r1" "l2 \<approx> r2 "
  shows "(l1 @ l2) \<approx> (r1 @ r2)"
using a
apply(induct arbitrary: l2 r2)
apply(simp_all)
apply(blast intro: list_eq.intros append_rsp_aux1)+
done

lemma append_rsp[quot_respect]:
  "(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
  by (auto simp add: append_rsp_aux2)

lemma map_rsp:
  assumes a: "a \<approx> b"
  shows "map f a \<approx> map f b"
  using a
  apply (induct)
  apply(auto intro: list_eq.intros)
  done

lemma ho_map_rsp[quot_respect]:
  "(op = ===> op \<approx> ===> op \<approx>) map map"
  by (simp add: map_rsp)

lemma map_append:
  "(map f (a @ b)) \<approx> (map f a) @ (map f b)"
 by simp (rule list_eq_refl)

lemma ho_fold_rsp[quot_respect]:
  "(op = ===> op = ===> op = ===> op \<approx> ===> op =) fold1 fold1"
  apply (auto)
  apply (case_tac "rsp_fold x")
  prefer 2
  apply (erule_tac list_eq.induct)
  apply (simp_all)
  apply (erule_tac list_eq.induct)
  apply (simp_all)
  apply (auto simp add: mem_rsp rsp_fold_def)
done

lemma list_equiv_rsp[quot_respect]:
  shows "(op \<approx> ===> op \<approx> ===> op =) op \<approx> op \<approx>"
by (auto intro: list_eq.intros)

lemma "IN x EMPTY = False"
apply(lifting member.simps(1))
done

lemma "IN x (INSERT y xa) = (x = y \<or> IN x xa)"
apply (lifting member.simps(2))
done

lemma "INSERT a (INSERT a x) = INSERT a x"
apply (lifting list_eq.intros(4))
done

lemma "x = xa \<Longrightarrow> INSERT a x = INSERT a xa"
apply (lifting list_eq.intros(5))
done

lemma "CARD x = Suc n \<Longrightarrow> (\<exists>a b. \<not> IN a b & x = INSERT a b)"
apply (lifting card1_suc)
done

lemma "(\<not> IN x xa) = (CARD (INSERT x xa) = Suc (CARD xa))"
apply (lifting not_mem_card1)
done

lemma "FOLD f g (z::'b) (INSERT a x) =
  (if rsp_fold f then if IN a x then FOLD f g z x else f (g a) (FOLD f g z x) else z)"
apply(lifting fold1.simps(2))
done

lemma "fmap f (FUNION (x::'b fset) (xa::'b fset)) = FUNION (fmap f x) (fmap f xa)"
apply (lifting map_append)
done

lemma "FUNION (FUNION x xa) xb = FUNION x (FUNION xa xb)"
apply (lifting append_assoc)
done


lemma "\<lbrakk>P EMPTY; \<And>a x. P x \<Longrightarrow> P (INSERT a x)\<rbrakk> \<Longrightarrow> P l"
apply(lifting list.induct)
done

lemma list_induct_part:
  assumes a: "P (x :: 'a list) ([] :: 'c list)"
  assumes b: "\<And>e t. P x t \<Longrightarrow> P x (e # t)"
  shows "P x l"
  apply (rule_tac P="P x" in list.induct)
  apply (rule a)
  apply (rule b)
  apply (assumption)
  done

lemma "P (x :: 'a list) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
apply (lifting list_induct_part)
done

lemma "P (x :: 'a fset) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
apply (lifting list_induct_part)
done

lemma "P (x :: 'a fset) ([] :: 'c list) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (e # t)) \<Longrightarrow> P x l"
apply (lifting list_induct_part)
done

quotient_type 'a fset2 = "'a list" / "list_eq"
  by (rule equivp_list_eq)

quotient_definition
   "EMPTY2 :: 'a fset2"
is
  "[]::'a list"

quotient_definition
   "INSERT2 :: 'a \<Rightarrow> 'a fset2 \<Rightarrow> 'a fset2"
is
  "op #"

lemma "P (x :: 'a fset2) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
apply (lifting list_induct_part)
done

lemma "P (x :: 'a fset) (EMPTY2 :: 'c fset2) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT2 e t)) \<Longrightarrow> P x l"
apply (lifting list_induct_part)
done

quotient_definition
  "fset_rec :: 'a \<Rightarrow> ('b \<Rightarrow> 'b fset \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a"
is
  "list_rec"

quotient_definition
  "fset_case :: 'a \<Rightarrow> ('b \<Rightarrow> 'b fset \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a"
is
  "list_case"

(* Probably not true without additional assumptions about the function *)
lemma list_rec_rsp[quot_respect]:
  "(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_rec list_rec"
  apply (auto)
  apply (erule_tac list_eq.induct)
  apply (simp_all)
  sorry

lemma list_case_rsp[quot_respect]:
  "(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_case list_case"
  apply (auto)
  sorry

lemma "fset_rec (f1::'t) x (INSERT a xa) = x a xa (fset_rec f1 x xa)"
apply (lifting list.recs(2))
done

lemma "fset_case (f1::'t) f2 (INSERT a xa) = f2 a xa"
apply (lifting list.cases(2))
done

lemma ttt: "((op @) x ((op #) e [])) = (((op #) e x))"
sorry

lemma "(FUNION x (INSERT e EMPTY)) = ((INSERT e x))"
apply (lifting ttt)
done


lemma ttt2: "(\<lambda>e. ((op @) x ((op #) e []))) = (\<lambda>e. ((op #) e x))"
sorry

lemma "(\<lambda>e. (FUNION x (INSERT e EMPTY))) = (\<lambda>e. (INSERT e x))"
apply(lifting ttt2)
apply(regularize)
apply(rule impI)
apply(simp)
apply(rule allI)
apply(rule list_eq_refl)
done

lemma ttt3: "(\<lambda>x. ((op @) x (e # []))) = (op #) e"
sorry

lemma "(\<lambda>x. (FUNION x (INSERT e EMPTY))) = INSERT e"
apply(lifting ttt3)
apply(regularize)
apply(auto simp add: cons_rsp)
done
lemma hard: "(\<lambda>P. \<lambda>Q. P (Q (x::'a list))) = (\<lambda>P. \<lambda>Q. Q (P (x::'a list)))"
sorry

lemma eq_imp_rel:
  shows "equivp R \<Longrightarrow> a = b \<longrightarrow> R a b"
  by (simp add: equivp_reflp)


lemma hard_lift: "(\<lambda>P. \<lambda>Q. P (Q (x::'a fset))) = (\<lambda>P. \<lambda>Q. Q (P (x::'a fset)))"
apply(lifting hard)
apply(regularize)
apply(rule fun_rel_id_asm)
apply(subst babs_simp)
apply(tactic {* Quotient_Tacs.quotient_tac @{context} 1 *})
apply(rule fun_rel_id_asm)
apply(rule impI)
apply(rule mp[OF eq_imp_rel[OF fset_equivp]])
apply(drule fun_cong)
apply(drule fun_cong)
apply(assumption)
done

lemma test: "All (\<lambda>(x::'a list, y). x = y)"
sorry

lemma  "All (\<lambda>(x::'a fset, y). x = y)"
apply(lifting test)
done

lemma test2: "Ex (\<lambda>(x::'a list, y). x = y)"
sorry

lemma  "Ex (\<lambda>(x::'a fset, y). x = y)"
apply(lifting test2)
done

lemma test3: "All (\<lambda> (x :: 'a list, y, z). x = y \<and> y = z)"
sorry

lemma "All (\<lambda> (x :: 'a fset, y, z). x = y \<and> y = z)"
apply(lifting test3)
done

lemma test4: "\<forall> (x :: 'a list, y, z) \<in> Respects(
  prod_rel (op \<approx>) (prod_rel (op \<approx>) (op \<approx>))
). x = y \<and> y = z"
sorry

lemma "All (\<lambda> (x :: 'a fset, y, z). x = y \<and> y = z)"
apply (lifting test4)
sorry

lemma test5: "\<forall> (x :: 'a list \<Rightarrow> 'a list, y) \<in> Respects(
  prod_rel (op \<approx> ===> op \<approx>) (op \<approx> ===> op \<approx>)
). (op \<approx> ===> op \<approx>) x y"
sorry

lemma "All (\<lambda> (x :: 'a fset \<Rightarrow> 'a fset, y). x = y)"
apply (lifting test5)
done

lemma test6: "\<forall> (x :: 'a list \<Rightarrow> 'a list, y, z) \<in> Respects(
  prod_rel (op \<approx> ===> op \<approx>) (prod_rel (op \<approx> ===> op \<approx>) (op \<approx> ===> op \<approx>))
). (op \<approx> ===> op \<approx>) x y \<and> (op \<approx> ===> op \<approx>) y z"
sorry

lemma "All (\<lambda> (x :: 'a fset \<Rightarrow> 'a fset, y, z). x = y \<and> y = z)"
apply (lifting test6)
done

end