side-by-side tests of lets with single assignment; deep-binder case works if the recursion is avoided using an auxiliary function
theory Nominal2_Abs
imports "Nominal2_Base"
"~~/src/HOL/Quotient"
"~~/src/HOL/Library/Quotient_List"
"~~/src/HOL/Library/Quotient_Product"
begin
section {* Abstractions *}
fun
alpha_set
where
alpha_set[simp del]:
"alpha_set (bs, x) R f pi (cs, y) \<longleftrightarrow>
f x - bs = f y - cs \<and>
(f x - bs) \<sharp>* pi \<and>
R (pi \<bullet> x) y \<and>
pi \<bullet> bs = cs"
fun
alpha_res
where
alpha_res[simp del]:
"alpha_res (bs, x) R f pi (cs, y) \<longleftrightarrow>
f x - bs = f y - cs \<and>
(f x - bs) \<sharp>* pi \<and>
R (pi \<bullet> x) y"
fun
alpha_lst
where
alpha_lst[simp del]:
"alpha_lst (bs, x) R f pi (cs, y) \<longleftrightarrow>
f x - set bs = f y - set cs \<and>
(f x - set bs) \<sharp>* pi \<and>
R (pi \<bullet> x) y \<and>
pi \<bullet> bs = cs"
lemmas alphas = alpha_set.simps alpha_res.simps alpha_lst.simps
notation
alpha_set ("_ \<approx>set _ _ _ _" [100, 100, 100, 100, 100] 100) and
alpha_res ("_ \<approx>res _ _ _ _" [100, 100, 100, 100, 100] 100) and
alpha_lst ("_ \<approx>lst _ _ _ _" [100, 100, 100, 100, 100] 100)
section {* Mono *}
lemma [mono]:
shows "R1 \<le> R2 \<Longrightarrow> alpha_set bs R1 \<le> alpha_set bs R2"
and "R1 \<le> R2 \<Longrightarrow> alpha_res bs R1 \<le> alpha_res bs R2"
and "R1 \<le> R2 \<Longrightarrow> alpha_lst cs R1 \<le> alpha_lst cs R2"
by (case_tac [!] bs, case_tac [!] cs)
(auto simp add: le_fun_def le_bool_def alphas)
section {* Equivariance *}
lemma alpha_eqvt[eqvt]:
shows "(bs, x) \<approx>set R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>set (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
and "(bs, x) \<approx>res R f q (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>res (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
and "(ds, x) \<approx>lst R f q (es, y) \<Longrightarrow> (p \<bullet> ds, p \<bullet> x) \<approx>lst (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> es, p \<bullet> y)"
unfolding alphas
unfolding permute_eqvt[symmetric]
unfolding set_eqvt[symmetric]
unfolding permute_fun_app_eq[symmetric]
unfolding Diff_eqvt[symmetric]
by (auto simp add: permute_bool_def fresh_star_permute_iff)
section {* Equivalence *}
lemma alpha_refl:
assumes a: "R x x"
shows "(bs, x) \<approx>set R f 0 (bs, x)"
and "(bs, x) \<approx>res R f 0 (bs, x)"
and "(cs, x) \<approx>lst R f 0 (cs, x)"
using a
unfolding alphas
unfolding fresh_star_def
by (simp_all add: fresh_zero_perm)
lemma alpha_sym:
assumes a: "R (p \<bullet> x) y \<Longrightarrow> R (- p \<bullet> y) x"
shows "(bs, x) \<approx>set R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>set R f (- p) (bs, x)"
and "(bs, x) \<approx>res R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>res R f (- p) (bs, x)"
and "(ds, x) \<approx>lst R f p (es, y) \<Longrightarrow> (es, y) \<approx>lst R f (- p) (ds, x)"
unfolding alphas fresh_star_def
using a
by (auto simp add: fresh_minus_perm)
lemma alpha_trans:
assumes a: "\<lbrakk>R (p \<bullet> x) y; R (q \<bullet> y) z\<rbrakk> \<Longrightarrow> R ((q + p) \<bullet> x) z"
shows "\<lbrakk>(bs, x) \<approx>set R f p (cs, y); (cs, y) \<approx>set R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>set R f (q + p) (ds, z)"
and "\<lbrakk>(bs, x) \<approx>res R f p (cs, y); (cs, y) \<approx>res R f q (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>res R f (q + p) (ds, z)"
and "\<lbrakk>(es, x) \<approx>lst R f p (gs, y); (gs, y) \<approx>lst R f q (hs, z)\<rbrakk> \<Longrightarrow> (es, x) \<approx>lst R f (q + p) (hs, z)"
using a
unfolding alphas fresh_star_def
by (simp_all add: fresh_plus_perm)
lemma alpha_sym_eqvt:
assumes a: "R (p \<bullet> x) y \<Longrightarrow> R y (p \<bullet> x)"
and b: "p \<bullet> R = R"
shows "(bs, x) \<approx>set R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>set R f (- p) (bs, x)"
and "(bs, x) \<approx>res R f p (cs, y) \<Longrightarrow> (cs, y) \<approx>res R f (- p) (bs, x)"
and "(ds, x) \<approx>lst R f p (es, y) \<Longrightarrow> (es, y) \<approx>lst R f (- p) (ds, x)"
apply(auto intro!: alpha_sym)
apply(drule_tac [!] a)
apply(rule_tac [!] p="p" in permute_boolE)
apply(perm_simp add: permute_minus_cancel b)
apply(assumption)
apply(perm_simp add: permute_minus_cancel b)
apply(assumption)
apply(perm_simp add: permute_minus_cancel b)
apply(assumption)
done
lemma alpha_set_trans_eqvt:
assumes b: "(cs, y) \<approx>set R f q (ds, z)"
and a: "(bs, x) \<approx>set R f p (cs, y)"
and d: "q \<bullet> R = R"
and c: "\<lbrakk>R (p \<bullet> x) y; R y (- q \<bullet> z)\<rbrakk> \<Longrightarrow> R (p \<bullet> x) (- q \<bullet> z)"
shows "(bs, x) \<approx>set R f (q + p) (ds, z)"
apply(rule alpha_trans)
defer
apply(rule a)
apply(rule b)
apply(drule c)
apply(rule_tac p="q" in permute_boolE)
apply(perm_simp add: permute_minus_cancel d)
apply(assumption)
apply(rotate_tac -1)
apply(drule_tac p="q" in permute_boolI)
apply(perm_simp add: permute_minus_cancel d)
apply(simp add: permute_eqvt[symmetric])
done
lemma alpha_res_trans_eqvt:
assumes b: "(cs, y) \<approx>res R f q (ds, z)"
and a: "(bs, x) \<approx>res R f p (cs, y)"
and d: "q \<bullet> R = R"
and c: "\<lbrakk>R (p \<bullet> x) y; R y (- q \<bullet> z)\<rbrakk> \<Longrightarrow> R (p \<bullet> x) (- q \<bullet> z)"
shows "(bs, x) \<approx>res R f (q + p) (ds, z)"
apply(rule alpha_trans)
defer
apply(rule a)
apply(rule b)
apply(drule c)
apply(rule_tac p="q" in permute_boolE)
apply(perm_simp add: permute_minus_cancel d)
apply(assumption)
apply(rotate_tac -1)
apply(drule_tac p="q" in permute_boolI)
apply(perm_simp add: permute_minus_cancel d)
apply(simp add: permute_eqvt[symmetric])
done
lemma alpha_lst_trans_eqvt:
assumes b: "(cs, y) \<approx>lst R f q (ds, z)"
and a: "(bs, x) \<approx>lst R f p (cs, y)"
and d: "q \<bullet> R = R"
and c: "\<lbrakk>R (p \<bullet> x) y; R y (- q \<bullet> z)\<rbrakk> \<Longrightarrow> R (p \<bullet> x) (- q \<bullet> z)"
shows "(bs, x) \<approx>lst R f (q + p) (ds, z)"
apply(rule alpha_trans)
defer
apply(rule a)
apply(rule b)
apply(drule c)
apply(rule_tac p="q" in permute_boolE)
apply(perm_simp add: permute_minus_cancel d)
apply(assumption)
apply(rotate_tac -1)
apply(drule_tac p="q" in permute_boolI)
apply(perm_simp add: permute_minus_cancel d)
apply(simp add: permute_eqvt[symmetric])
done
lemmas alpha_trans_eqvt = alpha_set_trans_eqvt alpha_res_trans_eqvt alpha_lst_trans_eqvt
section {* General Abstractions *}
fun
alpha_abs_set
where
[simp del]:
"alpha_abs_set (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>set (op=) supp p (cs, y))"
fun
alpha_abs_lst
where
[simp del]:
"alpha_abs_lst (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>lst (op=) supp p (cs, y))"
fun
alpha_abs_res
where
[simp del]:
"alpha_abs_res (bs, x) (cs, y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>res (op=) supp p (cs, y))"
notation
alpha_abs_set (infix "\<approx>abs'_set" 50) and
alpha_abs_lst (infix "\<approx>abs'_lst" 50) and
alpha_abs_res (infix "\<approx>abs'_res" 50)
lemmas alphas_abs = alpha_abs_set.simps alpha_abs_res.simps alpha_abs_lst.simps
lemma alphas_abs_refl:
shows "(bs, x) \<approx>abs_set (bs, x)"
and "(bs, x) \<approx>abs_res (bs, x)"
and "(cs, x) \<approx>abs_lst (cs, x)"
unfolding alphas_abs
unfolding alphas
unfolding fresh_star_def
by (rule_tac [!] x="0" in exI)
(simp_all add: fresh_zero_perm)
lemma alphas_abs_sym:
shows "(bs, x) \<approx>abs_set (cs, y) \<Longrightarrow> (cs, y) \<approx>abs_set (bs, x)"
and "(bs, x) \<approx>abs_res (cs, y) \<Longrightarrow> (cs, y) \<approx>abs_res (bs, x)"
and "(ds, x) \<approx>abs_lst (es, y) \<Longrightarrow> (es, y) \<approx>abs_lst (ds, x)"
unfolding alphas_abs
unfolding alphas
unfolding fresh_star_def
by (erule_tac [!] exE, rule_tac [!] x="-p" in exI)
(auto simp add: fresh_minus_perm)
lemma alphas_abs_trans:
shows "\<lbrakk>(bs, x) \<approx>abs_set (cs, y); (cs, y) \<approx>abs_set (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>abs_set (ds, z)"
and "\<lbrakk>(bs, x) \<approx>abs_res (cs, y); (cs, y) \<approx>abs_res (ds, z)\<rbrakk> \<Longrightarrow> (bs, x) \<approx>abs_res (ds, z)"
and "\<lbrakk>(es, x) \<approx>abs_lst (gs, y); (gs, y) \<approx>abs_lst (hs, z)\<rbrakk> \<Longrightarrow> (es, x) \<approx>abs_lst (hs, z)"
unfolding alphas_abs
unfolding alphas
unfolding fresh_star_def
apply(erule_tac [!] exE, erule_tac [!] exE)
apply(rule_tac [!] x="pa + p" in exI)
by (simp_all add: fresh_plus_perm)
lemma alphas_abs_eqvt:
shows "(bs, x) \<approx>abs_set (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>abs_set (p \<bullet> cs, p \<bullet> y)"
and "(bs, x) \<approx>abs_res (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>abs_res (p \<bullet> cs, p \<bullet> y)"
and "(ds, x) \<approx>abs_lst (es, y) \<Longrightarrow> (p \<bullet> ds, p \<bullet> x) \<approx>abs_lst (p \<bullet> es, p \<bullet> y)"
unfolding alphas_abs
unfolding alphas
unfolding set_eqvt[symmetric]
unfolding supp_eqvt[symmetric]
unfolding Diff_eqvt[symmetric]
apply(erule_tac [!] exE)
apply(rule_tac [!] x="p \<bullet> pa" in exI)
by (auto simp add: fresh_star_permute_iff permute_eqvt[symmetric])
section {* Strengthening the equivalence *}
lemma disjoint_right_eq:
assumes a: "A \<union> B1 = A \<union> B2"
and b: "A \<inter> B1 = {}" "A \<inter> B2 = {}"
shows "B1 = B2"
using a b
by (metis Int_Un_distrib2 Int_absorb2 Int_commute Un_upper2)
lemma supp_property_res:
assumes a: "(as, x) \<approx>res (op =) supp p (as', x')"
shows "p \<bullet> (supp x \<inter> as) = supp x' \<inter> as'"
proof -
from a have "(supp x - as) \<sharp>* p" by (auto simp only: alphas)
then have *: "p \<bullet> (supp x - as) = (supp x - as)"
by (simp add: atom_set_perm_eq)
have "(supp x' - as') \<union> (supp x' \<inter> as') = supp x'" by auto
also have "\<dots> = supp (p \<bullet> x)" using a by (simp add: alphas)
also have "\<dots> = p \<bullet> (supp x)" by (simp add: supp_eqvt)
also have "\<dots> = p \<bullet> ((supp x - as) \<union> (supp x \<inter> as))" by auto
also have "\<dots> = (p \<bullet> (supp x - as)) \<union> (p \<bullet> (supp x \<inter> as))" by (simp add: union_eqvt)
also have "\<dots> = (supp x - as) \<union> (p \<bullet> (supp x \<inter> as))" using * by simp
also have "\<dots> = (supp x' - as') \<union> (p \<bullet> (supp x \<inter> as))" using a by (simp add: alphas)
finally have "(supp x' - as') \<union> (supp x' \<inter> as') = (supp x' - as') \<union> (p \<bullet> (supp x \<inter> as))" .
moreover
have "(supp x' - as') \<inter> (supp x' \<inter> as') = {}" by auto
moreover
have "(supp x - as) \<inter> (supp x \<inter> as) = {}" by auto
then have "p \<bullet> ((supp x - as) \<inter> (supp x \<inter> as) = {})" by (simp add: permute_bool_def)
then have "(p \<bullet> (supp x - as)) \<inter> (p \<bullet> (supp x \<inter> as)) = {}" by (perm_simp) (simp)
then have "(supp x - as) \<inter> (p \<bullet> (supp x \<inter> as)) = {}" using * by simp
then have "(supp x' - as') \<inter> (p \<bullet> (supp x \<inter> as)) = {}" using a by (simp add: alphas)
ultimately show "p \<bullet> (supp x \<inter> as) = supp x' \<inter> as'"
by (auto dest: disjoint_right_eq)
qed
lemma alpha_abs_res_stronger1_aux:
assumes asm: "(as, x) \<approx>res (op =) supp p' (as', x')"
shows "\<exists>p. (as, x) \<approx>res (op =) supp p (as', x') \<and> supp p \<subseteq> (supp x \<inter> as) \<union> (supp x' \<inter> as')"
proof -
from asm have 0: "(supp x - as) \<sharp>* p'" by (auto simp only: alphas)
then have #: "p' \<bullet> (supp x - as) = (supp x - as)"
by (simp add: atom_set_perm_eq)
obtain p where *: "\<forall>b \<in> supp x. p \<bullet> b = p' \<bullet> b" and **: "supp p \<subseteq> supp x \<union> p' \<bullet> supp x"
using set_renaming_perm2 by blast
from * have a: "p \<bullet> x = p' \<bullet> x" using supp_perm_perm_eq by auto
from 0 have 1: "(supp x - as) \<sharp>* p" using *
by (auto simp add: fresh_star_def fresh_perm)
then have 2: "(supp x - as) \<inter> supp p = {}"
by (auto simp add: fresh_star_def fresh_def)
have b: "supp x = (supp x - as) \<union> (supp x \<inter> as)" by auto
have "supp p \<subseteq> supp x \<union> p' \<bullet> supp x" using ** by simp
also have "\<dots> = (supp x - as) \<union> (supp x \<inter> as) \<union> (p' \<bullet> ((supp x - as) \<union> (supp x \<inter> as)))"
using b by simp
also have "\<dots> = (supp x - as) \<union> (supp x \<inter> as) \<union> ((p' \<bullet> (supp x - as)) \<union> (p' \<bullet> (supp x \<inter> as)))"
by (simp add: union_eqvt)
also have "\<dots> = (supp x - as) \<union> (supp x \<inter> as) \<union> (p' \<bullet> (supp x \<inter> as))"
using # by auto
also have "\<dots> = (supp x - as) \<union> (supp x \<inter> as) \<union> (supp x' \<inter> as')" using asm
by (simp add: supp_property_res)
finally have "supp p \<subseteq> (supp x - as) \<union> (supp x \<inter> as) \<union> (supp x' \<inter> as')" .
then
have "supp p \<subseteq> (supp x \<inter> as) \<union> (supp x' \<inter> as')" using 2 by auto
moreover
have "(as, x) \<approx>res (op =) supp p (as', x')" using asm 1 a by (simp add: alphas)
ultimately
show "\<exists>p. (as, x) \<approx>res (op =) supp p (as', x') \<and> supp p \<subseteq> (supp x \<inter> as) \<union> (supp x' \<inter> as')" by blast
qed
lemma alpha_abs_res_minimal:
assumes asm: "(as, x) \<approx>res (op =) supp p (as', x')"
shows "(as \<inter> supp x, x) \<approx>res (op =) supp p (as' \<inter> supp x', x')"
using asm unfolding alpha_res by (auto simp add: Diff_Int)
lemma alpha_abs_res_abs_set:
assumes asm: "(as, x) \<approx>res (op =) supp p (as', x')"
shows "(as \<inter> supp x, x) \<approx>set (op =) supp p (as' \<inter> supp x', x')"
proof -
have c: "p \<bullet> x = x'"
using alpha_abs_res_minimal[OF asm] unfolding alpha_res by clarify
then have a: "supp x - as \<inter> supp x = supp (p \<bullet> x) - as' \<inter> supp (p \<bullet> x)"
using alpha_abs_res_minimal[OF asm] by (simp add: alpha_res)
have b: "(supp x - as \<inter> supp x) \<sharp>* p"
using alpha_abs_res_minimal[OF asm] unfolding alpha_res by clarify
have "p \<bullet> (as \<inter> supp x) = as' \<inter> supp (p \<bullet> x)"
by (metis Int_commute asm c supp_property_res)
then show ?thesis using a b c unfolding alpha_set by simp
qed
lemma alpha_abs_set_abs_res:
assumes asm: "(as \<inter> supp x, x) \<approx>set (op =) supp p (as' \<inter> supp x', x')"
shows "(as, x) \<approx>res (op =) supp p (as', x')"
using asm unfolding alphas by (auto simp add: Diff_Int)
lemma alpha_abs_res_stronger1:
assumes asm: "(as, x) \<approx>res (op =) supp p' (as', x')"
shows "\<exists>p. (as, x) \<approx>res (op =) supp p (as', x') \<and> supp p \<subseteq> as \<union> as'"
using alpha_abs_res_stronger1_aux[OF asm] by auto
lemma alpha_abs_set_stronger1:
assumes asm: "(as, x) \<approx>set (op =) supp p' (as', x')"
shows "\<exists>p. (as, x) \<approx>set (op =) supp p (as', x') \<and> supp p \<subseteq> as \<union> as'"
proof -
from asm have 0: "(supp x - as) \<sharp>* p'" by (auto simp only: alphas)
then have #: "p' \<bullet> (supp x - as) = (supp x - as)"
by (simp add: atom_set_perm_eq)
obtain p where *: "\<forall>b \<in> (supp x \<union> as). p \<bullet> b = p' \<bullet> b"
and **: "supp p \<subseteq> (supp x \<union> as) \<union> p' \<bullet> (supp x \<union> as)"
using set_renaming_perm2 by blast
from * have "\<forall>b \<in> supp x. p \<bullet> b = p' \<bullet> b" by blast
then have a: "p \<bullet> x = p' \<bullet> x" using supp_perm_perm_eq by auto
from * have "\<forall>b \<in> as. p \<bullet> b = p' \<bullet> b" by blast
then have zb: "p \<bullet> as = p' \<bullet> as"
apply(auto simp add: permute_set_eq)
apply(rule_tac x="xa" in exI)
apply(simp)
done
have zc: "p' \<bullet> as = as'" using asm by (simp add: alphas)
from 0 have 1: "(supp x - as) \<sharp>* p" using *
by (auto simp add: fresh_star_def fresh_perm)
then have 2: "(supp x - as) \<inter> supp p = {}"
by (auto simp add: fresh_star_def fresh_def)
have b: "supp x = (supp x - as) \<union> (supp x \<inter> as)" by auto
have "supp p \<subseteq> supp x \<union> as \<union> p' \<bullet> supp x \<union> p' \<bullet> as" using ** using union_eqvt by blast
also have "\<dots> = (supp x - as) \<union> (supp x \<inter> as) \<union> as \<union> (p' \<bullet> ((supp x - as) \<union> (supp x \<inter> as))) \<union> p' \<bullet> as"
using b by simp
also have "\<dots> = (supp x - as) \<union> (supp x \<inter> as) \<union> as \<union>
((p' \<bullet> (supp x - as)) \<union> (p' \<bullet> (supp x \<inter> as))) \<union> p' \<bullet> as" by (simp add: union_eqvt)
also have "\<dots> = (supp x - as) \<union> (supp x \<inter> as) \<union> as \<union> (p' \<bullet> (supp x \<inter> as)) \<union> p' \<bullet> as"
using # by auto
also have "\<dots> = (supp x - as) \<union> (supp x \<inter> as) \<union> as \<union> p' \<bullet> ((supp x \<inter> as) \<union> as)" using union_eqvt
by auto
also have "\<dots> = (supp x - as) \<union> (supp x \<inter> as) \<union> as \<union> p' \<bullet> as"
by (metis Int_commute Un_commute sup_inf_absorb)
also have "\<dots> = (supp x - as) \<union> as \<union> p' \<bullet> as" by blast
finally have "supp p \<subseteq> (supp x - as) \<union> as \<union> p' \<bullet> as" .
then have "supp p \<subseteq> as \<union> p' \<bullet> as" using 2 by blast
moreover
have "(as, x) \<approx>set (op =) supp p (as', x')" using asm 1 a zb by (simp add: alphas)
ultimately
show "\<exists>p. (as, x) \<approx>set (op =) supp p (as', x') \<and> supp p \<subseteq> as \<union> as'" using zc by blast
qed
lemma alpha_abs_lst_stronger1:
assumes asm: "(as, x) \<approx>lst (op =) supp p' (as', x')"
shows "\<exists>p. (as, x) \<approx>lst (op =) supp p (as', x') \<and> supp p \<subseteq> set as \<union> set as'"
proof -
from asm have 0: "(supp x - set as) \<sharp>* p'" by (auto simp only: alphas)
then have #: "p' \<bullet> (supp x - set as) = (supp x - set as)"
by (simp add: atom_set_perm_eq)
obtain p where *: "\<forall>b \<in> (supp x \<union> set as). p \<bullet> b = p' \<bullet> b"
and **: "supp p \<subseteq> (supp x \<union> set as) \<union> p' \<bullet> (supp x \<union> set as)"
using set_renaming_perm2 by blast
from * have "\<forall>b \<in> supp x. p \<bullet> b = p' \<bullet> b" by blast
then have a: "p \<bullet> x = p' \<bullet> x" using supp_perm_perm_eq by auto
from * have "\<forall>b \<in> set as. p \<bullet> b = p' \<bullet> b" by blast
then have zb: "p \<bullet> as = p' \<bullet> as" by (induct as) (auto)
have zc: "p' \<bullet> set as = set as'" using asm by (simp add: alphas set_eqvt)
from 0 have 1: "(supp x - set as) \<sharp>* p" using *
by (auto simp add: fresh_star_def fresh_perm)
then have 2: "(supp x - set as) \<inter> supp p = {}"
by (auto simp add: fresh_star_def fresh_def)
have b: "supp x = (supp x - set as) \<union> (supp x \<inter> set as)" by auto
have "supp p \<subseteq> supp x \<union> set as \<union> p' \<bullet> supp x \<union> p' \<bullet> set as" using ** using union_eqvt by blast
also have "\<dots> = (supp x - set as) \<union> (supp x \<inter> set as) \<union> set as \<union>
(p' \<bullet> ((supp x - set as) \<union> (supp x \<inter> set as))) \<union> p' \<bullet> set as" using b by simp
also have "\<dots> = (supp x - set as) \<union> (supp x \<inter> set as) \<union> set as \<union>
((p' \<bullet> (supp x - set as)) \<union> (p' \<bullet> (supp x \<inter> set as))) \<union> p' \<bullet> set as" by (simp add: union_eqvt)
also have "\<dots> = (supp x - set as) \<union> (supp x \<inter> set as) \<union> set as \<union>
(p' \<bullet> (supp x \<inter> set as)) \<union> p' \<bullet> set as" using # by auto
also have "\<dots> = (supp x - set as) \<union> (supp x \<inter> set as) \<union> set as \<union> p' \<bullet> ((supp x \<inter> set as) \<union> set as)"
using union_eqvt by auto
also have "\<dots> = (supp x - set as) \<union> (supp x \<inter> set as) \<union> set as \<union> p' \<bullet> set as"
by (metis Int_commute Un_commute sup_inf_absorb)
also have "\<dots> = (supp x - set as) \<union> set as \<union> p' \<bullet> set as" by blast
finally have "supp p \<subseteq> (supp x - set as) \<union> set as \<union> p' \<bullet> set as" .
then have "supp p \<subseteq> set as \<union> p' \<bullet> set as" using 2 by blast
moreover
have "(as, x) \<approx>lst (op =) supp p (as', x')" using asm 1 a zb by (simp add: alphas)
ultimately
show "\<exists>p. (as, x) \<approx>lst (op =) supp p (as', x') \<and> supp p \<subseteq> set as \<union> set as'" using zc by blast
qed
lemma alphas_abs_stronger:
shows "(as, x) \<approx>abs_set (as', x') \<longleftrightarrow> (\<exists>p. (as, x) \<approx>set (op =) supp p (as', x') \<and> supp p \<subseteq> as \<union> as')"
and "(as, x) \<approx>abs_res (as', x') \<longleftrightarrow> (\<exists>p. (as, x) \<approx>res (op =) supp p (as', x') \<and> supp p \<subseteq> as \<union> as')"
and "(bs, x) \<approx>abs_lst (bs', x') \<longleftrightarrow>
(\<exists>p. (bs, x) \<approx>lst (op =) supp p (bs', x') \<and> supp p \<subseteq> set bs \<union> set bs')"
apply(rule iffI)
apply(auto simp add: alphas_abs alpha_abs_set_stronger1)[1]
apply(auto simp add: alphas_abs)[1]
apply(rule iffI)
apply(auto simp add: alphas_abs alpha_abs_res_stronger1)[1]
apply(auto simp add: alphas_abs)[1]
apply(rule iffI)
apply(auto simp add: alphas_abs alpha_abs_lst_stronger1)[1]
apply(auto simp add: alphas_abs)[1]
done
section {* Quotient types *}
quotient_type
'a abs_set = "(atom set \<times> 'a::pt)" / "alpha_abs_set"
and 'b abs_res = "(atom set \<times> 'b::pt)" / "alpha_abs_res"
and 'c abs_lst = "(atom list \<times> 'c::pt)" / "alpha_abs_lst"
apply(rule_tac [!] equivpI)
unfolding reflp_def refl_on_def symp_def sym_def transp_def trans_def
by (auto intro: alphas_abs_sym alphas_abs_refl alphas_abs_trans simp only:)
quotient_definition
Abs_set ("[_]set. _" [60, 60] 60)
where
"Abs_set::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_set"
is
"Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)"
quotient_definition
Abs_res ("[_]res. _" [60, 60] 60)
where
"Abs_res::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_res"
is
"Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)"
quotient_definition
Abs_lst ("[_]lst. _" [60, 60] 60)
where
"Abs_lst::atom list \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs_lst"
is
"Pair::atom list \<Rightarrow> ('a::pt) \<Rightarrow> (atom list \<times> 'a)"
lemma [quot_respect]:
shows "(op= ===> op= ===> alpha_abs_set) Pair Pair"
and "(op= ===> op= ===> alpha_abs_res) Pair Pair"
and "(op= ===> op= ===> alpha_abs_lst) Pair Pair"
unfolding fun_rel_def
by (auto intro: alphas_abs_refl)
lemma [quot_respect]:
shows "(op= ===> alpha_abs_set ===> alpha_abs_set) permute permute"
and "(op= ===> alpha_abs_res ===> alpha_abs_res) permute permute"
and "(op= ===> alpha_abs_lst ===> alpha_abs_lst) permute permute"
unfolding fun_rel_def
by (auto intro: alphas_abs_eqvt simp only: Pair_eqvt)
lemma Abs_eq_iff:
shows "Abs_set bs x = Abs_set cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>set (op =) supp p (cs, y))"
and "Abs_res bs x = Abs_res cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>res (op =) supp p (cs, y))"
and "Abs_lst bsl x = Abs_lst csl y \<longleftrightarrow> (\<exists>p. (bsl, x) \<approx>lst (op =) supp p (csl, y))"
by (lifting alphas_abs)
lemma Abs_eq_iff2:
shows "Abs_set bs x = Abs_set cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>set (op =) supp p (cs, y) \<and> supp p \<subseteq> bs \<union> cs)"
and "Abs_res bs x = Abs_res cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>res (op =) supp p (cs, y) \<and> supp p \<subseteq> bs \<union> cs)"
and "Abs_lst bsl x = Abs_lst csl y \<longleftrightarrow>
(\<exists>p. (bsl, x) \<approx>lst (op =) supp p (csl, y) \<and> supp p \<subseteq> set bsl \<union> set csl)"
by (lifting alphas_abs_stronger)
lemma Abs_eq_res_set:
"(([bs]res. x) = ([cs]res. y)) = (([(bs \<inter> supp x)]set. x) = ([(cs \<inter> supp y)]set. y))"
unfolding Abs_eq_iff
using alpha_abs_set_abs_res alpha_abs_res_abs_set
apply auto
apply (rule_tac x="p" in exI)
apply assumption
apply (rule_tac x="p" in exI)
apply assumption
done
lemma Abs_eq_res_supp:
assumes asm: "supp x \<subseteq> bs"
shows "([as]res. x) = ([as \<inter> bs]res. x)"
unfolding Abs_eq_iff alphas
apply (rule_tac x="0::perm" in exI)
apply (simp add: fresh_star_zero)
using asm by blast
lemma Abs_exhausts:
shows "(\<And>as (x::'a::pt). y1 = Abs_set as x \<Longrightarrow> P1) \<Longrightarrow> P1"
and "(\<And>as (x::'a::pt). y2 = Abs_res as x \<Longrightarrow> P2) \<Longrightarrow> P2"
and "(\<And>as (x::'a::pt). y3 = Abs_lst as x \<Longrightarrow> P3) \<Longrightarrow> P3"
by (lifting prod.exhaust[where 'a="atom set" and 'b="'a"]
prod.exhaust[where 'a="atom set" and 'b="'a"]
prod.exhaust[where 'a="atom list" and 'b="'a"])
instantiation abs_set :: (pt) pt
begin
quotient_definition
"permute_abs_set::perm \<Rightarrow> ('a::pt abs_set) \<Rightarrow> 'a abs_set"
is
"permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)"
lemma permute_Abs_set[simp]:
fixes x::"'a::pt"
shows "(p \<bullet> (Abs_set as x)) = Abs_set (p \<bullet> as) (p \<bullet> x)"
by (lifting permute_prod.simps[where 'a="atom set" and 'b="'a"])
instance
apply(default)
apply(case_tac [!] x rule: Abs_exhausts(1))
apply(simp_all)
done
end
instantiation abs_res :: (pt) pt
begin
quotient_definition
"permute_abs_res::perm \<Rightarrow> ('a::pt abs_res) \<Rightarrow> 'a abs_res"
is
"permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)"
lemma permute_Abs_res[simp]:
fixes x::"'a::pt"
shows "(p \<bullet> (Abs_res as x)) = Abs_res (p \<bullet> as) (p \<bullet> x)"
by (lifting permute_prod.simps[where 'a="atom set" and 'b="'a"])
instance
apply(default)
apply(case_tac [!] x rule: Abs_exhausts(2))
apply(simp_all)
done
end
instantiation abs_lst :: (pt) pt
begin
quotient_definition
"permute_abs_lst::perm \<Rightarrow> ('a::pt abs_lst) \<Rightarrow> 'a abs_lst"
is
"permute:: perm \<Rightarrow> (atom list \<times> 'a::pt) \<Rightarrow> (atom list \<times> 'a::pt)"
lemma permute_Abs_lst[simp]:
fixes x::"'a::pt"
shows "(p \<bullet> (Abs_lst as x)) = Abs_lst (p \<bullet> as) (p \<bullet> x)"
by (lifting permute_prod.simps[where 'a="atom list" and 'b="'a"])
instance
apply(default)
apply(case_tac [!] x rule: Abs_exhausts(3))
apply(simp_all)
done
end
lemmas permute_Abs[eqvt] = permute_Abs_set permute_Abs_res permute_Abs_lst
lemma Abs_swap1:
assumes a1: "a \<notin> (supp x) - bs"
and a2: "b \<notin> (supp x) - bs"
shows "Abs_set bs x = Abs_set ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x)"
and "Abs_res bs x = Abs_res ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x)"
unfolding Abs_eq_iff
unfolding alphas
unfolding supp_eqvt[symmetric] Diff_eqvt[symmetric]
unfolding fresh_star_def fresh_def
unfolding swap_set_not_in[OF a1 a2]
using a1 a2
by (rule_tac [!] x="(a \<rightleftharpoons> b)" in exI)
(auto simp add: supp_perm swap_atom)
lemma Abs_swap2:
assumes a1: "a \<notin> (supp x) - (set bs)"
and a2: "b \<notin> (supp x) - (set bs)"
shows "Abs_lst bs x = Abs_lst ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x)"
unfolding Abs_eq_iff
unfolding alphas
unfolding supp_eqvt[symmetric] Diff_eqvt[symmetric] set_eqvt[symmetric]
unfolding fresh_star_def fresh_def
unfolding swap_set_not_in[OF a1 a2]
using a1 a2
by (rule_tac [!] x="(a \<rightleftharpoons> b)" in exI)
(auto simp add: supp_perm swap_atom)
lemma Abs_supports:
shows "((supp x) - as) supports (Abs_set as x)"
and "((supp x) - as) supports (Abs_res as x)"
and "((supp x) - set bs) supports (Abs_lst bs x)"
unfolding supports_def
unfolding permute_Abs
by (simp_all add: Abs_swap1[symmetric] Abs_swap2[symmetric])
function
supp_set :: "('a::pt) abs_set \<Rightarrow> atom set"
where
"supp_set (Abs_set as x) = supp x - as"
apply(case_tac x rule: Abs_exhausts(1))
apply(simp)
apply(simp add: Abs_eq_iff alphas_abs alphas)
done
termination supp_set
by (auto intro!: local.termination)
function
supp_res :: "('a::pt) abs_res \<Rightarrow> atom set"
where
"supp_res (Abs_res as x) = supp x - as"
apply(case_tac x rule: Abs_exhausts(2))
apply(simp)
apply(simp add: Abs_eq_iff alphas_abs alphas)
done
termination supp_res
by (auto intro!: local.termination)
function
supp_lst :: "('a::pt) abs_lst \<Rightarrow> atom set"
where
"supp_lst (Abs_lst cs x) = (supp x) - (set cs)"
apply(case_tac x rule: Abs_exhausts(3))
apply(simp)
apply(simp add: Abs_eq_iff alphas_abs alphas)
done
termination supp_lst
by (auto intro!: local.termination)
lemma supp_funs_eqvt[eqvt]:
shows "(p \<bullet> supp_set x) = supp_set (p \<bullet> x)"
and "(p \<bullet> supp_res y) = supp_res (p \<bullet> y)"
and "(p \<bullet> supp_lst z) = supp_lst (p \<bullet> z)"
apply(case_tac x rule: Abs_exhausts(1))
apply(simp add: supp_eqvt Diff_eqvt)
apply(case_tac y rule: Abs_exhausts(2))
apply(simp add: supp_eqvt Diff_eqvt)
apply(case_tac z rule: Abs_exhausts(3))
apply(simp add: supp_eqvt Diff_eqvt set_eqvt)
done
lemma Abs_fresh_aux:
shows "a \<sharp> Abs bs x \<Longrightarrow> a \<sharp> supp_set (Abs bs x)"
and "a \<sharp> Abs_res bs x \<Longrightarrow> a \<sharp> supp_res (Abs_res bs x)"
and "a \<sharp> Abs_lst cs x \<Longrightarrow> a \<sharp> supp_lst (Abs_lst cs x)"
by (rule_tac [!] fresh_fun_eqvt_app)
(auto simp only: eqvt_def eqvts_raw)
lemma Abs_supp_subset1:
assumes a: "finite (supp x)"
shows "(supp x) - as \<subseteq> supp (Abs_set as x)"
and "(supp x) - as \<subseteq> supp (Abs_res as x)"
and "(supp x) - (set bs) \<subseteq> supp (Abs_lst bs x)"
unfolding supp_conv_fresh
by (auto dest!: Abs_fresh_aux)
(simp_all add: fresh_def supp_finite_atom_set a)
lemma Abs_supp_subset2:
assumes a: "finite (supp x)"
shows "supp (Abs_set as x) \<subseteq> (supp x) - as"
and "supp (Abs_res as x) \<subseteq> (supp x) - as"
and "supp (Abs_lst bs x) \<subseteq> (supp x) - (set bs)"
by (rule_tac [!] supp_is_subset)
(simp_all add: Abs_supports a)
lemma Abs_finite_supp:
assumes a: "finite (supp x)"
shows "supp (Abs_set as x) = (supp x) - as"
and "supp (Abs_res as x) = (supp x) - as"
and "supp (Abs_lst bs x) = (supp x) - (set bs)"
by (rule_tac [!] subset_antisym)
(simp_all add: Abs_supp_subset1[OF a] Abs_supp_subset2[OF a])
lemma supp_Abs:
fixes x::"'a::fs"
shows "supp (Abs_set as x) = (supp x) - as"
and "supp (Abs_res as x) = (supp x) - as"
and "supp (Abs_lst bs x) = (supp x) - (set bs)"
by (rule_tac [!] Abs_finite_supp)
(simp_all add: finite_supp)
instance abs_set :: (fs) fs
apply(default)
apply(case_tac x rule: Abs_exhausts(1))
apply(simp add: supp_Abs finite_supp)
done
instance abs_res :: (fs) fs
apply(default)
apply(case_tac x rule: Abs_exhausts(2))
apply(simp add: supp_Abs finite_supp)
done
instance abs_lst :: (fs) fs
apply(default)
apply(case_tac x rule: Abs_exhausts(3))
apply(simp add: supp_Abs finite_supp)
done
lemma Abs_fresh_iff:
fixes x::"'a::fs"
shows "a \<sharp> Abs_set bs x \<longleftrightarrow> a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x)"
and "a \<sharp> Abs_res bs x \<longleftrightarrow> a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x)"
and "a \<sharp> Abs_lst cs x \<longleftrightarrow> a \<in> (set cs) \<or> (a \<notin> (set cs) \<and> a \<sharp> x)"
unfolding fresh_def
unfolding supp_Abs
by auto
lemma Abs_fresh_star_iff:
fixes x::"'a::fs"
shows "as \<sharp>* Abs_set bs x \<longleftrightarrow> (as - bs) \<sharp>* x"
and "as \<sharp>* Abs_res bs x \<longleftrightarrow> (as - bs) \<sharp>* x"
and "as \<sharp>* Abs_lst cs x \<longleftrightarrow> (as - set cs) \<sharp>* x"
unfolding fresh_star_def
by (auto simp add: Abs_fresh_iff)
lemma Abs_fresh_star:
fixes x::"'a::fs"
shows "as \<subseteq> as' \<Longrightarrow> as \<sharp>* Abs_set as' x"
and "as \<subseteq> as' \<Longrightarrow> as \<sharp>* Abs_res as' x"
and "bs \<subseteq> set bs' \<Longrightarrow> bs \<sharp>* Abs_lst bs' x"
unfolding fresh_star_def
by(auto simp add: Abs_fresh_iff)
lemma Abs_fresh_star2:
fixes x::"'a::fs"
shows "as \<inter> bs = {} \<Longrightarrow> as \<sharp>* Abs_set bs x \<longleftrightarrow> as \<sharp>* x"
and "as \<inter> bs = {} \<Longrightarrow> as \<sharp>* Abs_res bs x \<longleftrightarrow> as \<sharp>* x"
and "cs \<inter> set ds = {} \<Longrightarrow> cs \<sharp>* Abs_lst ds x \<longleftrightarrow> cs \<sharp>* x"
unfolding fresh_star_def Abs_fresh_iff
by auto
lemma Abs1_eq:
fixes x::"'a::fs"
shows "Abs_set {a} x = Abs_set {a} y \<longleftrightarrow> x = y"
and "Abs_res {a} x = Abs_res {a} y \<longleftrightarrow> x = y"
and "Abs_lst [c] x = Abs_lst [c] y \<longleftrightarrow> x = y"
unfolding Abs_eq_iff2 alphas
apply(simp_all add: supp_perm_singleton fresh_star_def fresh_zero_perm)
apply(blast)+
done
lemma Abs1_eq_iff:
fixes x::"'a::fs"
assumes "sort_of a = sort_of b"
and "sort_of c = sort_of d"
shows "Abs_set {a} x = Abs_set {b} y \<longleftrightarrow> (a = b \<and> x = y) \<or> (a \<noteq> b \<and> x = (a \<rightleftharpoons> b) \<bullet> y \<and> a \<sharp> y)"
and "Abs_res {a} x = Abs_res {b} y \<longleftrightarrow> (a = b \<and> x = y) \<or> (a \<noteq> b \<and> x = (a \<rightleftharpoons> b) \<bullet> y \<and> a \<sharp> y)"
and "Abs_lst [c] x = Abs_lst [d] y \<longleftrightarrow> (c = d \<and> x = y) \<or> (c \<noteq> d \<and> x = (c \<rightleftharpoons> d) \<bullet> y \<and> c \<sharp> y)"
proof -
{ assume "a = b"
then have "Abs_set {a} x = Abs_set {b} y \<longleftrightarrow> (a = b \<and> x = y)" by (simp add: Abs1_eq)
}
moreover
{ assume *: "a \<noteq> b" and **: "Abs_set {a} x = Abs_set {b} y"
have #: "a \<sharp> Abs_set {b} y" by (simp add: **[symmetric] Abs_fresh_iff)
have "Abs_set {a} ((a \<rightleftharpoons> b) \<bullet> y) = (a \<rightleftharpoons> b) \<bullet> (Abs_set {b} y)" by (simp add: permute_set_eq assms)
also have "\<dots> = Abs_set {b} y"
by (rule swap_fresh_fresh) (simp add: #, simp add: Abs_fresh_iff)
also have "\<dots> = Abs_set {a} x" using ** by simp
finally have "a \<noteq> b \<and> x = (a \<rightleftharpoons> b) \<bullet> y \<and> a \<sharp> y" using # * by (simp add: Abs1_eq Abs_fresh_iff)
}
moreover
{ assume *: "a \<noteq> b" and **: "x = (a \<rightleftharpoons> b) \<bullet> y \<and> a \<sharp> y"
have "Abs_set {a} x = Abs_set {a} ((a \<rightleftharpoons> b) \<bullet> y)" using ** by simp
also have "\<dots> = (a \<rightleftharpoons> b) \<bullet> Abs_set {b} y" by (simp add: permute_set_eq assms)
also have "\<dots> = Abs_set {b} y"
by (rule swap_fresh_fresh) (simp add: Abs_fresh_iff **, simp add: Abs_fresh_iff)
finally have "Abs_set {a} x = Abs_set {b} y" .
}
ultimately
show "Abs_set {a} x = Abs_set {b} y \<longleftrightarrow> (a = b \<and> x = y) \<or> (a \<noteq> b \<and> x = (a \<rightleftharpoons> b) \<bullet> y \<and> a \<sharp> y)"
by blast
next
{ assume "a = b"
then have "Abs_res {a} x = Abs_res {b} y \<longleftrightarrow> (a = b \<and> x = y)" by (simp add: Abs1_eq)
}
moreover
{ assume *: "a \<noteq> b" and **: "Abs_res {a} x = Abs_res {b} y"
have #: "a \<sharp> Abs_res {b} y" by (simp add: **[symmetric] Abs_fresh_iff)
have "Abs_res {a} ((a \<rightleftharpoons> b) \<bullet> y) = (a \<rightleftharpoons> b) \<bullet> (Abs_res {b} y)" by (simp add: permute_set_eq assms)
also have "\<dots> = Abs_res {b} y"
by (rule swap_fresh_fresh) (simp add: #, simp add: Abs_fresh_iff)
also have "\<dots> = Abs_res {a} x" using ** by simp
finally have "a \<noteq> b \<and> x = (a \<rightleftharpoons> b) \<bullet> y \<and> a \<sharp> y" using # * by (simp add: Abs1_eq Abs_fresh_iff)
}
moreover
{ assume *: "a \<noteq> b" and **: "x = (a \<rightleftharpoons> b) \<bullet> y \<and> a \<sharp> y"
have "Abs_res {a} x = Abs_res {a} ((a \<rightleftharpoons> b) \<bullet> y)" using ** by simp
also have "\<dots> = (a \<rightleftharpoons> b) \<bullet> Abs_res {b} y" by (simp add: permute_set_eq assms)
also have "\<dots> = Abs_res {b} y"
by (rule swap_fresh_fresh) (simp add: Abs_fresh_iff **, simp add: Abs_fresh_iff)
finally have "Abs_res {a} x = Abs_res {b} y" .
}
ultimately
show "Abs_res {a} x = Abs_res {b} y \<longleftrightarrow> (a = b \<and> x = y) \<or> (a \<noteq> b \<and> x = (a \<rightleftharpoons> b) \<bullet> y \<and> a \<sharp> y)"
by blast
next
{ assume "c = d"
then have "Abs_lst [c] x = Abs_lst [d] y \<longleftrightarrow> (c = d \<and> x = y)" by (simp add: Abs1_eq)
}
moreover
{ assume *: "c \<noteq> d" and **: "Abs_lst [c] x = Abs_lst [d] y"
have #: "c \<sharp> Abs_lst [d] y" by (simp add: **[symmetric] Abs_fresh_iff)
have "Abs_lst [c] ((c \<rightleftharpoons> d) \<bullet> y) = (c \<rightleftharpoons> d) \<bullet> (Abs_lst [d] y)" by (simp add: assms)
also have "\<dots> = Abs_lst [d] y"
by (rule swap_fresh_fresh) (simp add: #, simp add: Abs_fresh_iff)
also have "\<dots> = Abs_lst [c] x" using ** by simp
finally have "c \<noteq> d \<and> x = (c \<rightleftharpoons> d) \<bullet> y \<and> c \<sharp> y" using # * by (simp add: Abs1_eq Abs_fresh_iff)
}
moreover
{ assume *: "c \<noteq> d" and **: "x = (c \<rightleftharpoons> d) \<bullet> y \<and> c \<sharp> y"
have "Abs_lst [c] x = Abs_lst [c] ((c \<rightleftharpoons> d) \<bullet> y)" using ** by simp
also have "\<dots> = (c \<rightleftharpoons> d) \<bullet> Abs_lst [d] y" by (simp add: assms)
also have "\<dots> = Abs_lst [d] y"
by (rule swap_fresh_fresh) (simp add: Abs_fresh_iff **, simp add: Abs_fresh_iff)
finally have "Abs_lst [c] x = Abs_lst [d] y" .
}
ultimately
show "Abs_lst [c] x = Abs_lst [d] y \<longleftrightarrow> (c = d \<and> x = y) \<or> (c \<noteq> d \<and> x = (c \<rightleftharpoons> d) \<bullet> y \<and> c \<sharp> y)"
by blast
qed
lemma Abs1_eq_iff':
fixes x::"'a::fs"
assumes "sort_of a = sort_of b"
and "sort_of c = sort_of d"
shows "Abs_set {a} x = Abs_set {b} y \<longleftrightarrow> (a = b \<and> x = y) \<or> (a \<noteq> b \<and> (b \<rightleftharpoons> a) \<bullet> x = y \<and> b \<sharp> x)"
and "Abs_res {a} x = Abs_res {b} y \<longleftrightarrow> (a = b \<and> x = y) \<or> (a \<noteq> b \<and> (b \<rightleftharpoons> a) \<bullet> x = y \<and> b \<sharp> x)"
and "Abs_lst [c] x = Abs_lst [d] y \<longleftrightarrow> (c = d \<and> x = y) \<or> (c \<noteq> d \<and> (d \<rightleftharpoons> c) \<bullet> x = y \<and> d \<sharp> x)"
using assms by (auto simp add: Abs1_eq_iff fresh_permute_left)
subsection {* Renaming of bodies of abstractions *}
(* FIXME: finiteness assumption is not needed *)
lemma Abs_rename_set:
fixes x::"'a::fs"
assumes a: "(p \<bullet> bs) \<sharp>* x"
and b: "finite bs"
shows "\<exists>q. [bs]set. x = [p \<bullet> bs]set. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs"
proof -
from b set_renaming_perm
obtain q where *: "\<forall>b \<in> bs. q \<bullet> b = p \<bullet> b" and **: "supp q \<subseteq> bs \<union> (p \<bullet> bs)" by blast
have ***: "q \<bullet> bs = p \<bullet> bs" using b * by (induct) (simp add: permute_set_eq, simp add: insert_eqvt)
have "[bs]set. x = q \<bullet> ([bs]set. x)"
apply(rule perm_supp_eq[symmetric])
using a **
unfolding Abs_fresh_star_iff
unfolding fresh_star_def
by auto
also have "\<dots> = [q \<bullet> bs]set. (q \<bullet> x)" by simp
finally have "[bs]set. x = [p \<bullet> bs]set. (q \<bullet> x)" by (simp add: ***)
then show "\<exists>q. [bs]set. x = [p \<bullet> bs]set. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs" using *** by metis
qed
lemma Abs_rename_res:
fixes x::"'a::fs"
assumes a: "(p \<bullet> bs) \<sharp>* x"
and b: "finite bs"
shows "\<exists>q. [bs]res. x = [p \<bullet> bs]res. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs"
proof -
from b set_renaming_perm
obtain q where *: "\<forall>b \<in> bs. q \<bullet> b = p \<bullet> b" and **: "supp q \<subseteq> bs \<union> (p \<bullet> bs)" by blast
have ***: "q \<bullet> bs = p \<bullet> bs" using b * by (induct) (simp add: permute_set_eq, simp add: insert_eqvt)
have "[bs]res. x = q \<bullet> ([bs]res. x)"
apply(rule perm_supp_eq[symmetric])
using a **
unfolding Abs_fresh_star_iff
unfolding fresh_star_def
by auto
also have "\<dots> = [q \<bullet> bs]res. (q \<bullet> x)" by simp
finally have "[bs]res. x = [p \<bullet> bs]res. (q \<bullet> x)" by (simp add: ***)
then show "\<exists>q. [bs]res. x = [p \<bullet> bs]res. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs" using *** by metis
qed
lemma Abs_rename_lst:
fixes x::"'a::fs"
assumes a: "(p \<bullet> (set bs)) \<sharp>* x"
shows "\<exists>q. [bs]lst. x = [p \<bullet> bs]lst. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs"
proof -
from a list_renaming_perm
obtain q where *: "\<forall>b \<in> set bs. q \<bullet> b = p \<bullet> b" and **: "supp q \<subseteq> set bs \<union> (p \<bullet> set bs)" by blast
have ***: "q \<bullet> bs = p \<bullet> bs" using * by (induct bs) (simp_all add: insert_eqvt)
have "[bs]lst. x = q \<bullet> ([bs]lst. x)"
apply(rule perm_supp_eq[symmetric])
using a **
unfolding Abs_fresh_star_iff
unfolding fresh_star_def
by auto
also have "\<dots> = [q \<bullet> bs]lst. (q \<bullet> x)" by simp
finally have "[bs]lst. x = [p \<bullet> bs]lst. (q \<bullet> x)" by (simp add: ***)
then show "\<exists>q. [bs]lst. x = [p \<bullet> bs]lst. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs" using *** by metis
qed
text {* for deep recursive binders *}
lemma Abs_rename_set':
fixes x::"'a::fs"
assumes a: "(p \<bullet> bs) \<sharp>* x"
and b: "finite bs"
shows "\<exists>q. [bs]set. x = [q \<bullet> bs]set. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs"
using Abs_rename_set[OF a b] by metis
lemma Abs_rename_res':
fixes x::"'a::fs"
assumes a: "(p \<bullet> bs) \<sharp>* x"
and b: "finite bs"
shows "\<exists>q. [bs]res. x = [q \<bullet> bs]res. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs"
using Abs_rename_res[OF a b] by metis
lemma Abs_rename_lst':
fixes x::"'a::fs"
assumes a: "(p \<bullet> (set bs)) \<sharp>* x"
shows "\<exists>q. [bs]lst. x = [q \<bullet> bs]lst. (q \<bullet> x) \<and> q \<bullet> bs = p \<bullet> bs"
using Abs_rename_lst[OF a] by metis
section {* Infrastructure for building tuples of relations and functions *}
fun
prod_fv :: "('a \<Rightarrow> atom set) \<Rightarrow> ('b \<Rightarrow> atom set) \<Rightarrow> ('a \<times> 'b) \<Rightarrow> atom set"
where
"prod_fv fv1 fv2 (x, y) = fv1 x \<union> fv2 y"
definition
prod_alpha :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<times> 'b \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool)"
where
"prod_alpha = prod_rel"
lemma [quot_respect]:
shows "((R1 ===> op =) ===> (R2 ===> op =) ===> prod_rel R1 R2 ===> op =) prod_fv prod_fv"
unfolding fun_rel_def
unfolding prod_rel_def
by auto
lemma [quot_preserve]:
assumes q1: "Quotient R1 abs1 rep1"
and q2: "Quotient R2 abs2 rep2"
shows "((abs1 ---> id) ---> (abs2 ---> id) ---> map_pair rep1 rep2 ---> id) prod_fv = prod_fv"
by (simp add: fun_eq_iff Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
lemma [mono]:
shows "A <= B \<Longrightarrow> C <= D ==> prod_alpha A C <= prod_alpha B D"
unfolding prod_alpha_def
by auto
lemma [eqvt]:
shows "p \<bullet> prod_alpha A B x y = prod_alpha (p \<bullet> A) (p \<bullet> B) (p \<bullet> x) (p \<bullet> y)"
unfolding prod_alpha_def
unfolding prod_rel_def
by (perm_simp) (rule refl)
lemma [eqvt]:
shows "p \<bullet> prod_fv A B (x, y) = prod_fv (p \<bullet> A) (p \<bullet> B) (p \<bullet> x, p \<bullet> y)"
unfolding prod_fv.simps
by (perm_simp) (rule refl)
lemma prod_fv_supp:
shows "prod_fv supp supp = supp"
by (rule ext)
(auto simp add: prod_fv.simps supp_Pair)
lemma prod_alpha_eq:
shows "prod_alpha (op=) (op=) = (op=)"
unfolding prod_alpha_def
by (auto intro!: ext)
lemma Abs_lst1_fcb:
fixes x y :: "'a :: at_base"
and S T :: "'b :: fs"
assumes e: "(Abs_lst [atom x] T) = (Abs_lst [atom y] S)"
and f1: "x \<noteq> y \<Longrightarrow> atom y \<sharp> T \<Longrightarrow> atom x \<sharp> (atom y \<rightleftharpoons> atom x) \<bullet> T \<Longrightarrow> atom x \<sharp> f x T"
and f2: "x \<noteq> y \<Longrightarrow> atom y \<sharp> T \<Longrightarrow> atom x \<sharp> (atom y \<rightleftharpoons> atom x) \<bullet> T \<Longrightarrow> atom y \<sharp> f x T"
and p: "S = (atom x \<rightleftharpoons> atom y) \<bullet> T \<Longrightarrow> x \<noteq> y \<Longrightarrow> atom y \<sharp> T \<Longrightarrow> atom x \<sharp> S \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> (f x T) = f y S"
and s: "sort_of (atom x) = sort_of (atom y)"
shows "f x T = f y S"
using e
apply(case_tac "atom x \<sharp> S")
apply(simp add: Abs1_eq_iff'[OF s s])
apply(elim conjE disjE)
apply(simp)
apply(rule trans)
apply(rule_tac p="(atom x \<rightleftharpoons> atom y)" in supp_perm_eq[symmetric])
apply(rule fresh_star_supp_conv)
apply(simp add: supp_swap fresh_star_def s f1 f2)
apply(simp add: swap_commute p)
apply(simp add: Abs1_eq_iff[OF s s])
done
lemma Abs_lst_fcb:
fixes xs ys :: "'a :: fs"
and S T :: "'b :: fs"
assumes e: "(Abs_lst (ba xs) T) = (Abs_lst (ba ys) S)"
and f1: "\<And>x. x \<in> set (ba xs) \<Longrightarrow> x \<sharp> f xs T"
and f2: "\<And>x. supp T - set (ba xs) = supp S - set (ba ys) \<Longrightarrow> x \<in> set (ba ys) \<Longrightarrow> x \<sharp> f xs T"
and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> set (ba xs) \<union> set (ba ys) \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
shows "f xs T = f ys S"
using e apply -
apply(subst (asm) Abs_eq_iff2)
apply(simp add: alphas)
apply(elim exE conjE)
apply(rule trans)
apply(rule_tac p="p" in supp_perm_eq[symmetric])
apply(rule fresh_star_supp_conv)
apply(drule fresh_star_perm_set_conv)
apply(rule finite_Diff)
apply(rule finite_supp)
apply(subgoal_tac "(set (ba xs) \<union> set (ba ys)) \<sharp>* f xs T")
apply(metis Un_absorb2 fresh_star_Un)
apply(subst fresh_star_Un)
apply(rule conjI)
apply(simp add: fresh_star_def f1)
apply(simp add: fresh_star_def f2)
apply(simp add: eqv)
done
lemma Abs_set_fcb:
fixes xs ys :: "'a :: fs"
and S T :: "'b :: fs"
assumes e: "(Abs_set (ba xs) T) = (Abs_set (ba ys) S)"
and f1: "\<And>x. x \<in> ba xs \<Longrightarrow> x \<sharp> f xs T"
and f2: "\<And>x. supp T - ba xs = supp S - ba ys \<Longrightarrow> x \<in> ba ys \<Longrightarrow> x \<sharp> f xs T"
and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> ba xs \<union> ba ys \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
shows "f xs T = f ys S"
using e apply -
apply(subst (asm) Abs_eq_iff2)
apply(simp add: alphas)
apply(elim exE conjE)
apply(rule trans)
apply(rule_tac p="p" in supp_perm_eq[symmetric])
apply(rule fresh_star_supp_conv)
apply(drule fresh_star_perm_set_conv)
apply(rule finite_Diff)
apply(rule finite_supp)
apply(subgoal_tac "(ba xs \<union> ba ys) \<sharp>* f xs T")
apply(metis Un_absorb2 fresh_star_Un)
apply(subst fresh_star_Un)
apply(rule conjI)
apply(simp add: fresh_star_def f1)
apply(simp add: fresh_star_def f2)
apply(simp add: eqv)
done
lemma Abs_res_fcb:
fixes xs ys :: "('a :: at_base) set"
and S T :: "'b :: fs"
assumes e: "(Abs_res (atom ` xs) T) = (Abs_res (atom ` ys) S)"
and f1: "\<And>x. x \<in> atom ` xs \<Longrightarrow> x \<in> supp T \<Longrightarrow> x \<sharp> f xs T"
and f2: "\<And>x. supp T - atom ` xs = supp S - atom ` ys \<Longrightarrow> x \<in> atom ` ys \<Longrightarrow> x \<in> supp S \<Longrightarrow> x \<sharp> f xs T"
and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> supp p \<subseteq> atom ` xs \<inter> supp T \<union> atom ` ys \<inter> supp S
\<Longrightarrow> p \<bullet> (atom ` xs \<inter> supp T) = atom ` ys \<inter> supp S \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
shows "f xs T = f ys S"
using e apply -
apply(subst (asm) Abs_eq_res_set)
apply(subst (asm) Abs_eq_iff2)
apply(simp add: alphas)
apply(elim exE conjE)
apply(rule trans)
apply(rule_tac p="p" in supp_perm_eq[symmetric])
apply(rule fresh_star_supp_conv)
apply(drule fresh_star_perm_set_conv)
apply(rule finite_Diff)
apply(rule finite_supp)
apply(subgoal_tac "(atom ` xs \<inter> supp T \<union> atom ` ys \<inter> supp S) \<sharp>* f xs T")
apply(metis Un_absorb2 fresh_star_Un)
apply(subst fresh_star_Un)
apply(rule conjI)
apply(simp add: fresh_star_def f1)
apply(subgoal_tac "supp T - atom ` xs = supp S - atom ` ys")
apply(simp add: fresh_star_def f2)
apply(blast)
apply(simp add: eqv)
done
end