side-by-side tests of lets with single assignment; deep-binder case works if the recursion is avoided using an auxiliary function
theory LetSimple1
imports "../Nominal2"
begin
lemma Abs_lst_fcb2:
fixes as bs :: "atom list"
and x y :: "'b :: fs"
and c::"'c::fs"
assumes eq: "[as]lst. x = [bs]lst. y"
and fcb1: "(set as) \<sharp>* f as x c"
and fresh1: "set as \<sharp>* c"
and fresh2: "set bs \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
shows "f as x c = f bs y c"
proof -
have "supp (as, x, c) supports (f as x c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
then have fin1: "finite (supp (f as x c))"
by (auto intro: supports_finite simp add: finite_supp)
have "supp (bs, y, c) supports (f bs y c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
then have fin2: "finite (supp (f bs y c))"
by (auto intro: supports_finite simp add: finite_supp)
obtain q::"perm" where
fr1: "(q \<bullet> (set as)) \<sharp>* (x, c, f as x c, f bs y c)" and
fr2: "supp q \<sharp>* Abs_lst as x" and
inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)"
using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"]
fin1 fin2
by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp
also have "\<dots> = Abs_lst as x"
by (simp only: fr2 perm_supp_eq)
finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using eq by simp
then obtain r::perm where
qq1: "q \<bullet> x = r \<bullet> y" and
qq2: "q \<bullet> as = r \<bullet> bs" and
qq3: "supp r \<subseteq> (q \<bullet> (set as)) \<union> set bs"
apply(drule_tac sym)
apply(simp only: Abs_eq_iff2 alphas)
apply(erule exE)
apply(erule conjE)+
apply(drule_tac x="p" in meta_spec)
apply(simp add: set_eqvt)
apply(blast)
done
have "(set as) \<sharp>* f as x c" by (rule fcb1)
then have "q \<bullet> ((set as) \<sharp>* f as x c)"
by (simp add: permute_bool_def)
then have "set (q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm1)
using inc fresh1 fr1
apply(auto simp add: fresh_star_def fresh_Pair)
done
then have "set (r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
then have "r \<bullet> ((set bs) \<sharp>* f bs y c)"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm2[symmetric])
using qq3 fresh2 fr1
apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
done
then have fcb2: "(set bs) \<sharp>* f bs y c" by (simp add: permute_bool_def)
have "f as x c = q \<bullet> (f as x c)"
apply(rule perm_supp_eq[symmetric])
using inc fcb1 fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c"
apply(rule perm1)
using inc fresh1 fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
also have "\<dots> = r \<bullet> (f bs y c)"
apply(rule perm2[symmetric])
using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
also have "... = f bs y c"
apply(rule perm_supp_eq)
using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
finally show ?thesis by simp
qed
lemma Abs_lst1_fcb2:
fixes a b :: "atom"
and x y :: "'b :: fs"
and c::"'c :: fs"
assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)"
and fcb1: "a \<sharp> f a x c"
and fresh: "{a, b} \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c"
shows "f a x c = f b y c"
using e
apply(drule_tac Abs_lst_fcb2[where c="c" and f="\<lambda>(as::atom list) . f (hd as)"])
apply(simp_all)
using fcb1 fresh perm1 perm2
apply(simp_all add: fresh_star_def)
done
atom_decl name
nominal_datatype trm =
Var "name"
| App "trm" "trm"
| Let x::"name" "trm" t::"trm" bind x in t
print_theorems
thm trm.fv_defs
thm trm.eq_iff
thm trm.bn_defs
thm trm.bn_inducts
thm trm.perm_simps
thm trm.induct
thm trm.inducts
thm trm.distinct
thm trm.supp
thm trm.fresh
thm trm.exhaust
thm trm.strong_exhaust
thm trm.perm_bn_simps
nominal_primrec
height_trm :: "trm \<Rightarrow> nat"
where
"height_trm (Var x) = 1"
| "height_trm (App l r) = max (height_trm l) (height_trm r)"
| "height_trm (Let x t s) = max (height_trm t) (height_trm s)"
apply (simp only: eqvt_def height_trm_graph_def)
apply (rule, perm_simp, rule, rule TrueI)
apply (case_tac x rule: trm.exhaust(1))
apply (auto)[3]
apply(simp_all)[5]
apply (subgoal_tac "height_trm_sumC t = height_trm_sumC ta")
apply (subgoal_tac "height_trm_sumC s = height_trm_sumC sa")
apply simp
apply(simp)
apply(erule conjE)
apply(erule_tac c="()" in Abs_lst1_fcb2)
apply(simp_all add: fresh_star_def pure_fresh)[2]
apply(simp_all add: eqvt_at_def)[2]
apply(simp)
done
termination
by lexicographic_order
nominal_primrec (invariant "\<lambda>x (y::atom set). finite y")
frees_set :: "trm \<Rightarrow> atom set"
where
"frees_set (Var x) = {atom x}"
| "frees_set (App t1 t2) = frees_set t1 \<union> frees_set t2"
| "frees_set (Let x t s) = (frees_set s) - {atom x} \<union> (frees_set t)"
apply(simp add: eqvt_def frees_set_graph_def)
apply(rule, perm_simp, rule)
apply(erule frees_set_graph.induct)
apply(auto)[3]
apply(rule_tac y="x" in trm.exhaust)
apply(auto)[3]
apply(simp_all)[5]
apply(simp)
apply(erule conjE)
apply(subgoal_tac "frees_set_sumC s - {atom x} = frees_set_sumC sa - {atom xa}")
apply(simp)
apply(erule_tac c="()" in Abs_lst1_fcb2)
apply(simp add: fresh_minus_atom_set)
apply(simp add: fresh_star_def fresh_Unit)
apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl)
apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl)
done
termination
by lexicographic_order
nominal_primrec
subst :: "trm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> trm" ("_ [_ ::= _]" [90, 90, 90] 90)
where
"(Var x)[y ::= s] = (if x = y then s else (Var x))"
| "(App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])"
| "atom x \<sharp> (y, s) \<Longrightarrow> (Let x t t')[y ::= s] = Let x (t[y ::= s]) (t'[y ::= s])"
apply(simp add: eqvt_def subst_graph_def)
apply (rule, perm_simp, rule)
apply(rule TrueI)
apply(auto)[1]
apply(rule_tac y="a" and c="(aa, b)" in trm.strong_exhaust)
apply(blast)+
apply(simp_all add: fresh_star_def fresh_Pair_elim)[1]
apply(blast)
apply(simp_all)[5]
apply(simp (no_asm_use))
apply(simp)
apply(erule conjE)+
apply (erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
apply(simp add: Abs_fresh_iff)
apply(simp add: fresh_star_def fresh_Pair)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
done
termination
by lexicographic_order
end